
AD 

GRANT NUMBER:  DAMD17-94-J-4174 

TITLE:  Utilizing Serial Measures of Breast Cancer Risk Factors 

PRINCIPAL INVESTIGATOR:  Mimi Y. Kim,Sc.D. 

CONTRACTING ORGANIZATION:  New York University Medical Center 
New York, New York  10010-2598 

REPORT DATE:  January 1997 

TYPE OF REPORT:  Annual ^c QUAUTY INSPECTED a 

PREPARED FOR:  Commander 
U.S. Army Medical Research and Materiel Command 
Fort Detrick, Frederick, Maryland 21702-5012 

DISTRIBUTION STATEMENT:  Approved for public release; 
distribution unlimited 

The views, opinions and/or findings contained in this report are 
those of the author(s) and should not be construed as an official 
Department of the Army position, policy or decision unless so 
designated by other documentation. 

19970610 020 



REPORT DOCUMENTATION PAGE 
Form Approved 

OMB No. 0704-0188 

Public reporting burden for this collection < 

collection oftnfomSion'incfudiii'g suggestions for reducing this burden, to Washington Headquarters services, uireciorare ror information 'ue"»uD,&»!H ™J»» n'r'70503" 
•Davis!Highway. Suite1204, Arlington, VA 22202-4302. and to the Office of Management and Budget. Paperwork Reduction Project (0704-0188). Washington. DC Z0503. 

1. AGENCY USE ONLY (Leave blank) 2. REPORT DATE 
January 1997 

3.  REPORT TYPE AND DATES COVERED 
Annual (31 Dec 95 - 30 Dec 96) 

4. TITLE AND SUBTITLE 

Utilizing Serial Measures of Breast Cancer Risk Factors 

6. AUTKOR(S) 
Mimi Y. Kim, Sc.D. 

7.  PERFORMING ORGANIZATION NAME(S) AND ADDRESS(ES) 

New York University Medical Center 
New York, New York 10010-2598 

5. FUNDING NUMBERS 

DAMD17-94-J-4174 

PERFORMING ORGANIZATION 
REPORT NUMBER 

9.  SPONSORING/MONITORING AGENCY NAME(S) AND ADDRESS(ES) 
Commander 
U.S. Army Medical Research and Materiel Command 
Fort Detrick, Frederick, Maryland 21702-5012 

10.  SPONSORING/MONITORING 
AGENCY REPORT NUMBER 

11. SUPPLEMENTARY NOTES 

12a. DISTRIBUTION / AVAILABILITY STATEMENT 

Approved for public release;   distribution unlimited 

12b. DISTRIBUTION CODE 

13. ABSTRACT (Maximum 200 . . 
We present a technique for correcting for measurement error when subjects have 
a variable number of repeated measurements and the average of the measurements 
is used as the subject's measure of exposure in the analysis. A bootstrap 
method for obtaining confidence intervals of the relative risk estimates, 
which takes into account the variability in the estimates of the correction 
factors, is also described. The methods were applied to a nested case-control 
study of estradiol and risk of breast cancer. Measurement error correction 
techniques were also utilized in an analysis of serum testosterone and 
dehydroepiandrosterone sulfate with breast cancer risk in postmenopausal 
women. The results of the analyses correcting for error were similar to the 
results of the uncorrected analyses with respect to the relative strength of 
the associations of the hormonal variables. Finally, a model for adjusting 
hormone measurements for systematic fluctuations over the menstrual cycle, 
which will allow more valid comparisons of hormone levels between pre- 
menopausal cases and controls, was developed. The model was utilized to adjust 
hormone levels for day of cycle in an analysis of the association between 
total estradiol and risk of pre-menopausal breast cancer. 

14. SUBJECT TERMS Breast  Cancer,   Biostatistics,   Epidemiology. 
Measurement Error,  Hormones 

17. SECURITY CLASSIFICATION 
OF REPORT 

Unclassified 

18. SECURITY CLASSIFICATION 
OF THIS PAGE 

Unclassified 

19. SECURITY CLASSIFICATION 
OF ABSTRACT 

Unclassified 

15. NUMBER OF PAGES 

74  
16. PRICE CODE 

20. LIMITATION OF ABSTRACT 

Unlimited 
NSN 7540-01-280-5500 Standard Form 298 (Rev. 2-89) 



FOREWORD 

Opinions, interpretations, conclusions and recommendations are 
those of the author and are not necessarily endorsed by the U.S. 
Army. 

Where copyrighted material is quoted, permission has been 
obtained to use such material. 

Where material from documents designated for limited 
distribution is quoted, permission has been obtained to use the 
material. 

Citations of commercial organizations and trade names in 
this report do not constitute an official Department of Army 
endorsement or approval of the products or services of these 
organizations. 

In conducting research using animals, the investigator(s) 
adhered to the "Guide for the Care and Use of Laboratory 
Animals," prepared by the Committee on Care and use of Laboratory 
Animals of the Institute of Laboratory Resources, National 
Research Council (NIH Publication No. 86-23, Revised 1985). 

For the protection of human subjects, the investigator(s) 
Idhered to policies of applicable Federal Law 45 CFR 46. 

• * * 

In conducting research utilizing recombinant DNA technology, 
thlTinvestigator(s) adhered to current guidelines promulgated by 
the National Institutes of Health. 

In the conduct of research utilizing recombinant DNA, the 
Investigator(s) adhered to the NIH Guidelines for Research 
Involving Recombinant DNA Molecules. 

In the conduct of research involving hazardous organisms, 
. .thlTinvestigator(s) adhered to the CDC-NIH Guide for Biosafety in 
Microbiological and Biomedical Laboratories. 

m m-ju 'Jem 
PI  -  Stfgnatutfe// /   Date 



TABLE OF CONTENTS 

Overview 

1. Project I: Correcting for Measurement Error in the Analysis of Case- 
Control Data with Repeated Measurements of Exposure 

1.1 Introduction     8 

1.2 Methods   iO 
1.3 Example   15 

1.4 Conclusions   18 

1.5 References   22 

1.6 Appendix   27 

2. Project II:  Relation of Serum Testosterone and Dehydroepiandrosterone 
Sulfate with Risk of Breast Cancer in Postmenopausal Women 

3.1  Introduction   3 ° 
3 .2 Methods   32 

3.3 Results   36 

3.4 Conclusions   38 

3.5 References   43 

3. Project III: Adjusting hormone levels for day of menstrual cycle in 
pre-menopausal women 

2.1  Introduction   55 

2 . 2  Methods  56 

2 . 3  Results  59 

2 .4  Conclusions   62 

2 .5 References   63 

4. Appendix 

4.1 Reprint of published manuscript   68 



Overview 

This progress report describes research accomplished during the period December 31, 1995 - 
December 30, 1996. In this project period, work on the technique for correcting for measure- 
ment error when subjects have a variable number of repeated measurements of exposure was 
completed. In particular, a more efficient method for estimating the variance components of 
the reliability coefficient was incorporated, and the bootstrap method for obtaining corrected 
confidence intervals was refined. The methods were applied to a nested case-control study 
of estradiol and risk of breast cancer. The manuscript describing the techniques and results 
has been accepted for publication in The American Journal of Epidemiology, and com- 
prises Chapter I of this progress report. (Kim, M.Y. and Jacquotte-Zeleniuch, A. "Correcting 
for measurement error in the analysis of case-control data with repeated measurements of 

exposure".) 
Methods for correcting for exposure measurement error were also applied to a study of 

testosterone and dehydroepiandrosterone sulfate with risk of breast cancer in postmenopausal 
women. The objective of the analysis was to examine whether androgens had an effect on 
breast cancer risk, independent of their effect on the biological availability of estrogen. In 
analyses ignoring measurement error, testosterone was found to be positively associated with 
breast cancer risk; however, after including percent SHBG-bound estradiol and total estradiol 
in the statistical model, the odds ratios associated with higher levels of testosterone were 
considerably reduced, and there was no longer a significant trend. 

Because hormone levels were assessed from a single blood donation and subject to mea- 
surement error, methods for correcting multivariate logistic regression parameter estimates 
from case-control data were applied. The results of the analyses correcting for error were 
similar to the results of the uncorrected analyses with respect to the relative strength of the 
associations of the hormonal variables with breast cancer risk. These results are consistent 
with the hypothesis that testosterone has an indirect effect on breast cancer risk, via its 
influence on the amount of bioavailable estrogen. The manuscript describing this work is in 
Chapter II, and has been accepted for publication in The American Journal of Epidemi- 
ology. (Zeleniuch-Jacquotte, A., Bruning, P., Bonfrer, J., Koenig, K., Shore, R., Kim, M., 
Pasternack, B., Toniolo, P. "Relation of serum levels of testosterone and dehydroepiandros- 
terone sulfate with risk of breast cancer in postmenopausal women"). 

We also continued work on the method for adjusting for the systematic variability of 
hormone levels over the menstural cycle, based on a mixed ANOVA model with cubic 
splines. The method standardizes hormone measurements obtained at different time during 
the menstrual cycle, thus allowing for more valid comparisons of hormone levels between 
premenopausal breast cancer cases and controls. We applied the method to adjust the hor- 
mone levels of premenopausal subjects in a nested case-control study of total estradiol and 
breast cancer risk. Development of a bootstrap method for obtaining variances of the logistic 
regression parameters which takes into account the error associated with estimation of the 
calibration curve is still in progress. This project is described in Chapter III. 



The work on study design and sample size considerations for half-life studies, which is 
relevant to research on environmental contaminants such as PCBs and DDE that may be 
associated with risk of breast cancer, was described in the previous progress report. The 
manuscript based on this research has been published (Kim, M. and Dubin, N. (1996) Sample 
size and study design considerations for half-life studies. Archives of Environmental 
Contamination and Toxicology 30:423-429). A reprint of the article is provided in the 
Appendix. 



Chapter I 

Correcting for Measurement Error in the Anal- 

ysis of Case-Control Data with Repeated Mea- 

surements of Exposure 



1    Introduction 

In most case-control studies, the risk factors of interest are measured with error. For biologic 

variables, such as blood pressure, nutrient, and hormone levels, measurement error can arise 

from limitations in the measurement technique or laboratory assay. In addition, because the 

exposure of interest is usually a subject's underlying long-term average value rather than 

the level at any single point in time, intrinsic fluctuations in the variable over time can also 

contribute to measurement error. 

When the error is random and non-differential with respect to case-control status, it is well 

known that estimates of relative risk based on the mis-measured exposure will be attenuated. 

In order to minimize the effects of measurement error, many investigators advocate collecting 

repeated measurements of the exposure on all subjects and using the individual's average 

value (1). However, as noted by Rosner et al (2), even when the mean of several replicates is 

substituted for a single measurement, attenuation of relative risks may still occur, especially 

when the degree of measurement error is large and the average is based on only a few repeats. 

Methods for correcting estimates of relative risk for measurement error have been pro- 

posed in a number of epidemiologic and statistical papers (3,4). The most common method 

involves correcting the "naive" relative risk estimate based on the observed exposure by the 

expected amount of bias. In the case of logistic regression, the regression parameter will be 

attenuated by the factor, R, which is equal to the reliability coefficient of the mis-measured 

exposure (1,2). Therefore, one can multiply the biased estimate of the regression coefficient 

by the inverse of the reliability coefficient to obtain the corrected estimate. This method, 

however, is dependent on the assumption that the reliability of the exposure measurement 

is the same for all subjects. When the average of several replicates is used as the measure 

of exposure, this condition will be met only if all subjects have an equal number of repeated 

measurements, given the degree of measurement error associated with a single measurement 

is the same for all subjects. 
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In studies in which the exposure is measured on repeated occasions, however, subjects 

often have a variable number of measurements because of missing data. For example, the data 

that are utilized to illustrate the methods in this paper are derived from a nested case-control 

study of serum hormonal levels and breast cancer from the NYU Women's Health Study (5). 

The study cohort consists of 14,275 women who donated multiple blood samples over time 

and have been followed since enrollment for the development of breast cancer. Most women 

have donated one or two samples; however, many have also donated three or more. Because 

subjects with a larger number of multiple blood samples have a more reliable estimate of their 

true underlying serum hormonal levels than those with fewer measurements, the reliability 

of the measured exposure will not be constant across individuals. Consequently, the usual 

procedure for correcting for measurement error cannot be applied. 

Liu and Liang (6) proposed an estimating equation approach for obtaining consistent 

estimates of logistic regression parameters when all subjects have the same number of re- 

peated imprecise exposure measurements, which in principle could be extended to the more 

complicated situation when the number of replicates is variable between subjects. In this 

paper, we discuss an alternative method for correcting for measurement error in the analysis 

of matched case-control data when subjects have a variable number of repeated exposure 

measurements and the individual's average is used as the measure of exposure. The tech- 

nique, which assumes that both the true exposure and the measurement error are normally 

distributed, involves multiplying each subject's observed average by the reliability of the 

average prior to fitting the logistic regression model. The resulting logistic regression coef- 

ficient based on the transformed average is corrected for measurement error. A bootstrap 

algorithm for obtaining confidence intervals for the regression parameter which takes into 

account the variability due to estimation of the reliability coefficient is also proposed. 



2    Methods 

Measurement Error Model and Correction of Logistic Regression Parameter 

The methods described below are based on the measurement error model of Armstrong 

et al (7) for matched case-control studies. We assume that in each matching stratum, a case 

is matched to a variable number of controls. However, the techniques are generalizable to 

the unmatched design by assuming that there is only one matching stratum. 

Let xijk denote the unobserved true value of the exposure variable for the kth subject with 

case/control status j (0 = control, 1 = case), in stratum i (i = l,...,Af). Assume that xijk 

is normally distributed with mean, m + j8, and variance a]. In addition, let zijki denote the 

Ith observed value of xijk, measured with error, for / = l,...,nijk. We assume the following 

classical errors-in-variables model: 

where the error term, eijkh is independent of xijk and eijk,i, for / ^ /, and normally dis- 

tributed with mean 0 and variance, o\. It follows that the observed zijki in stratum i are 

normally distributed with means //,- + 8 and m for cases and controls, respectively, and com- 

mon variance, a\ + cr\. The variance component, a], can be interpreted as the variance of 

the true exposure, after stratifying by matching stratum and case/control status, and ae as 

the variance due to measurement error. 

With these assumptions and the application of Bayes' Rule, Armstrong et al (7) showed 

that the probability that a study subject is a case, conditional on zn, the observed average 

based on n measurements, and membership in stratum i, is a logistic function: 

urn     il-    ^ exp(aa- + ßRnzn) () 
PT(D = 1 \zn t) = — -.— >, V-) 

l + exp(a,- + ^if„2;n) 

where 

R  = ai  (2) 
a2

s + aljn 
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is the reliability of zn as a measure of x. When no measurement error is present, zn - x, the 

reliability coefficient is equal to 1, and (1) reduces to: 

om     11    ^        exp(at- + ßx) 
Pr(D = l\x;i) - — -, -W-T- v '     '      1 + exp(at- + ßx) 

Thus, an estimate of the logistic regression coefficient based on zn will estimate the "naive" 

coefficient, ß* = ßRn, rather than the true ß. Because the reliability coefficient is between 

0 and 1, the "naive" ß* will be attenuated relative to ß. We can see from (2), however, that 

as the number of repeated measurements increases, the reliability coefficient approaches 1, 

and the corresponding attenuation in ß will diminish. 

When all subjects have the same number of n repeated measurements, an estimate of 

the true regression coefficient can be obtained by fitting the logistic model using zn for each 

subject's exposure measurement, and multiplying the resulting coefficient estimate, ß*, by 

1/Rn. If subjects have a variable number of measurements, however, this approach cannot 

be applied, since the reliability of the exposure variable is no longer constant for all subjects, 

but depends on the number of available repeated measurements. 

For the case where the reliability of the exposure differs across subjects, a corrected 

estimate of the regression coefficient may be obtained by multiplying each subject's average 

exposure measurement by the reliability of the average, prior to model fitting. That is, 

if the kth subject in stratum i has the observed average zijk., based on nijk approximate 

measurements of xijk, then replacing the unknown xijk in the conditional logistic model 

with the transformed average, Rn,jkZijk., where Rnijk is calculated from (2), will yield an 

estimate of the true ß. Since the reliability increases with the number of measurements, 

this transformation results in greater "shrinkage" of averages based on a small number of 

repeats, and less shrinkage of more informative averages based on many repeats. 

When all subjects within the same matched set have the same number of repeats, this 

method is equivalent to the two-stage approach proposed by Thomas et al (4) and Whitte- 

more (8) for error correction in linear models, in which E{xijk\zijk.) is computed and then 
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used as the exposure in the usual regression model. Given the model assumptions described 

above, E(xijk\zijk.) = Rn,]kzijk. + (l-Rn,jk)E(xijk). If nijk is constant for all subjects in stra- 

tum i, the (1 - Rnijk)E(xijk) term is absorbed in the intercept term and does not affect the 

estimate of the slope parameter in the logistic regression model. Thus, utilizing E(xijk\zijk.) 

or RnikZijk. will yield equivalent estimates of the true regression parameter. Furthermore, 

when all subjects in the study have the same number of n repeats, this technique will re- 

sult in a corrected estimate of the logistic regression coefficient that is identical to the one 

obtained by correcting the naive estimate by 1/Rn- 

Although fitting the logistic model to the transformed covariate will result in an unbiased 

estimate of ß, the corresponding variance of ß will be underestimated unless the variance 

components in the reliability coefficient are known. Usually, however, the variance compo- 

nents are estimated from a separate reliability substudy or from subjects in the main study. 

In our setting, repeated measurements are assumed to be available on all or a subset of the 

main study participants. Thus, we can estimate the variance components, cr2 and a2
e, from 

the main study data by fitting the following mixed effects analysis of variance model to data 

on all cases and controls: 

Zijkl = Pi + öj + 7,-,-fc + CyfcJ, (3) 

where zijki is defined as before, m is the effect for stratum i, 6j is the effect due to case/control 

status, >yijk is a normally distributed random subject effect with mean 0 and variance a2, 

and tijki is the residual error which is normally distributed with mean 0 and variance a2. 

The variance components, a2 and <r2, can be estimated using one of several methods, 

including traditional analysis of variance (ANOVA), maximum likelihood, or restricted max- 

imum likelihood methods. The ANOVA method, available in the SAS procedure, PROC 

GLM, was used in our example because it is computationally simpler than the others, which 

is an important consideration when implementing the bootstrap procedure described in the 

next section for generating confidence intervals. However, this technique can lead to negative 

12 



variance estimates. The ML or REML estimators, which are available from PROC MIXED 

in SAS, do not have this limitation. For further details about the different estimation tech- 

niques, see Searle, Casella and McCulloch (9). 

The steps involved in obtaining an estimate of the logistic regression coefficient corrected 

for measurement error can be summarized as follows: 

1. Estimate the variance components, a\ and a], by fitting the mixed effects analysis of 

variance model in (3) to the study data. 

2. Multiply each subject's average exposure by Rnijk = o\l{b\ + <Te/nijk). 

3. Estimate the true logistic regression coefficient, ß, by fitting a conditional logistic 

regression model to the transformed averages. 

Because the technique is based on assuming that the true exposure and measurement error 

are normally distributed, suitable data transformations should be applied when the distri- 

butions deviate from normality. Note, however, that a data transformation such as the 

log-transform will result in a model in which the log odds of disease is a linear function of 

the exposure measured on the log, rather than the original scale. 

Bootstrap Method for Obtaining Confidence Intervals 

The width of the usual 95% confidence interval for the true ß based on the transformed 

covariate will be too narrow because the interval does not account for the extra variability 

associated with estimation of the variance components in Rn. Rosner et al. (2) have derived 

the asymptotic variance and corresponding confidence intervals of the corrected logistic re- 

gression parameter which includes the uncertainty of the variance estimates for use in cohort 

studies under a rare disease assumption. Their method, however is applicable only when 

all subjects in the main study have the same number of repeats.   For the situation when 
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subjects in a matched case-control study have a variable number of replicates, we propose 

the following bootstrap algorithm for obtaining confidence intervals for the true ß: 

1. Assuming there are M matched sets in the main study, generate a bootstrap sample 

using the matching stratum as the sampling unit, and sampling M matched sets with 

replacement from the main study data. For each matched set that is selected, the 

sample contains all the subjects within the matched set, along with each subject's 

case/control status and repeated measurements. 

2. Using the bootstrap sample, estimate a], o\, and the true ß by following the 3-step 

approach outlined in the previous section. 

3. Repeat (1) and (2) 1,000 times, which is the approximate minimum number of boot- 

straps necessary to compute bias-corrected confidence limits (10). 

In constructing a bootstrap sample from the main study data, sampling occurs at the level 

of the matching stratum since the matching between the cases and the controls needs to be 

preserved. If the number of controls matched to each case is variable across strata, one can 

sample the strata according to the number of subjects in each matched set, in order to keep 

the total sample size constant for each bootstrap iteration. For example, one samples with 

replacement M2 matched sets from the M2 sets in the main study with 2 controls per case, 

M3 sets from the strata with 3 controls per case, etc... 

The simple (1 - a)% confidence interval can be constructed using the a/2 and (1 - a/2) 

percentiles of the bootstrap distribution. Bias-corrected confidence intervals should be used 

when the bootstrap distribution of ß is asymmetric and when the sample size is small (10). 

We report only the bias-corrected confidence intervals in this paper. 

Thus far, our focus has been on correcting for measurement error in a single exposure 

variable, in the absence of confounders. However, the methods can also be generalized to the 
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multi-covariate situation, where the confounders, in addition to the primary exposure vari- 

able, may be measured with error. A brief outline of the methods is given in the Appendix. 

Additional details on the measurement error model and estimation of variance components 

are also described in Armstrong et al (7). 

3    Example 

The primary aim of the NYU Women's Health Study is to determine whether serum levels of 

endogenous hormones, such as estradiol, are associated with risk of breast cancer. Between 

March 1985 and June 1991, a cohort of 14,275 healthy women aged 34-65 years were enrolled 

at the Guttman Breast Diagnostic Institute, New York. At the time of enrollment and at 

annual screening visits thereafter, women were asked to donate blood and complete a self- 

administered questionnaire. Serum samples were frozen and stored for future biological 

assays. Subsequent cases of breast cancer were identified primarily through active follow-up 

and confirmed by reviewing medical and pathological records. In this example, only the 

women who were post-menopausal at enrollment (49%) were included. 

In order to limit the costs associated with measuring hormone levels in the cohort, a 

nested case-control study design was used. For each incident case of breast cancer, indi- 

vidually matched controls were selected at random from the risk set consisting of all cohort 

members alive and free of breast cancer at the time of diagnosis of the case, and who matched 

the case on menopausal status at entry, age at entry, and number and approximate dates of 

blood donations up to the date of diagnosis in the case. For additional details of the study 

design, see Toniolo et al (5). 

The goal of this example is to evaluate the effect of random measurement error on the 

associations between total, % free, and % bound to sex hormone binding globulin (SHBG- 

bound) estradiol levels and risk of breast cancer, when the average of all the available re- 

peated measurements for a subject is used as her exposure.  The associations between the 
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baseline measurements of the total, % free, and % SHBG-bound estradiol levels and risk of 

breast cancer among post-menopausal women, unadjusted for measurement error, were eval- 

uated by Toniolo et al (11). Total and % free estradiol were found to be positively associated 

with risk of breast cancer, whereas % SHGB-bound estradiol had a strong protective effect. 

One of the assumptions of the measurement error model is that the true and observed 

exposure variables are normally distributed. The distribution of total estradiol levels was 

skewed, so the logarithm of the values were used. Based on data from both post-menopausal 

cases and controls, we estimated the reliability coefficients for total, % free and % SHBG- 

bound estradiol, adjusted for matching stratum and case/control status, as: .48, .68, and 

.92, respectively (Table 1). (These estimates were somewhat lower than those published 

by Toniolo et al (12): .51, .77, and .94 for total, % free and % SHBG-bound estradiol, 

respectively, which were based on data from only the post-menopausal controls in the NYU 

Women's Health Study.) The estimates of the reliability coefficients indicate that the degree 

of measurement error in total and % free estradiol may be sufficiently large to attenuate 

observed relationships with risk of breast cancer. 

The main case-control study sample consisted of 381 subjects stratified into 130 matched 

sets. Ten matched sets had 1 control per case, 119 sets had 2 controls per case, and one set 

had 3 controls per case. Of the 381 subjects in the main study, 157 (41%) had 2 or more 

repeated measurements:  98 subjects had 2 replicates, 53 had 3 replicates, and 6 subjects 

had 4. 

We investigated the effects of measurement error on the observed associations between 

each exposure variable and risk of breast cancer by comparing the estimated logistic re- 

gression parameters based on the first measurement of the exposure for each subject, the 

average of the replicate measures, and the transformed (corrected) average value. Corre- 

sponding odds ratios were calculated from the regression estimates by comparing women 

in the 90"1 versus 10th percentiles of the observed distributions (i.e., 63.0 vs 14.5 for total 

estradiol, 1.7 vs. 1.04 for % free, and 57.6 vs 27.3 for % SHBG-bound estradiol). 
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The bootstrap confidence intervals were generated using the SAS macro facility to create 

the bootstrap sample, in conjunction with PROC PHREG, which fits conditional logistic 

regression models. All analyses were run on a DEC 3000/700 AXP computer workstation. 

The results are provided in Table 2. For total estradiol and % free estradiol, the uncor- 

rected analyses show that using the observed average of the repeated measurements results 

in a minor increase in the regression coefficient estimates compared with using only the 

baseline measurement. On the other hand, the estimated regression coefficients corrected 

for measurement error using the transformed averages are substantially larger than the es- 

timates based on the observed averages for both variables: increases are 74% and 40% for 

total and %free estradiol, respectively. 

The effect of measurement error on the estimated odds ratios is especially striking. When 

comparing women in the 90th percentile versus the 10th percentile of the observed total 

estradiol distribution, the corrected odds ratio was estimated to be 7.16, compared with 

uncorrected odds ratios of 2.64 and 3.10 using the baseline and untransformed average, 

respectively. Similarly, the corrected odds ratio for % free estradiol was 4.95, compared with 

3.07 for the baseline measurement and 3.13 for the average value. 

This illustrates how using the observed average of replicate measurements of exposure 

for each subject may not be sufficient to offset the effects of measurement error when the 

degree of error is large and when subjects have only a few replicates, and that additional 

error correction procedures may be necessary. In the case of total estradiol, one would need 

to take the average of 10 replicate measurements to improve the reliability to .90, based 

on the estimated variance components in Table 1. For % free estradiol, one would need 5 

measurements. Thus, it is not surprising that using the average value in our example did not 

appreciably deattenuate the corresponding regression coefficient, since only 41% of the study 

subjects had replicate measurements, and among these, most had only 2 or 3 measurements. 

Using the average resulted in a 17% increase in the regression coefficient for total estradiol, 

relative to using the first measurement. In comparison, if all subjects had 2 replicates, the 
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expected increase in the regression coefficient would be (R2-Ri)/Ri = (.65-.48)/.48 = 37% 

over the estimate based on 1 measurement. On the other hand, because % SHGB-bound 

estradiol levels are highly reproducible, the logistic regression estimates and corresponding 

odds ratios using the corrected average were not very different from the uncorrected analyses. 

Since 119 (92%) of the 130 matched sets had 2 controls matched per case, implementation 

of a more complex stratified bootstrap sampling scheme, which would keep the total number 

of subjects constant for each iteration, was not warranted. As one would expect, the bias- 

corrected bootstrap confidence intervals based on the transformed average, as shown in Table 

2, are shifted further away from 0 and are wider than the uncorrected confidence intervals 

for all variables, since the bootstrap method accounts for the variation due to estimation of 

the variance components in the reliability coefficient. When the variation in the estimates 

of variance components estimates was ignored, the simple 95% confidence intervals based on 

the corrected average were estimated to be: (.54, 2.13); (1.02, 3.82), and (-.074, -.025) for 

total, % free, and % SHBG-bound estradiol, respectively. Thus, ignoring the extra source of 

variation from Rn..t underestimated the width of the confidence interval by as much as 17% 

(for total estradiol) in our data set. 

4    Conclusions 

In most reliability studies, the within-subject or error variance of the exposure is estimated 

from an external population or from a random subset of the main study population from 

whom repeated measurements are obtained, and one must assume that the resulting estimate 

is generalizable to the main study population. In our example, the within-subject variances 

were estimated from the subjects in the main study with at least two repeated hormone 

measurements. Women with repeated measurements, however, may be different from those 

with only one measurement. Because blood samples in the NYU Women's Health Study 

were obtained at annual breast cancer screening visits, women with a family history of breast 
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cancer, for example, or those who are more health conscious, may have been more likely to 

return for subsequent visits. It is unlikely, though, that this would result in a systematic 

difference in the within-subject variability of the hormone levels between the subset with 

repeats and those who had only one measurement. Thus, we can assume generalizability of 

the estimated within-subject variance to all subjects in our main study. 

A second assumption of our error-correction method is that a subject's measurements are 

distributed randomly around the unobserved true value, and that levels of the exposure are 

not changing systematically over time. This assumption may not be true if hormone levels 

decrease with age. In addition, for breast cancer cases, hormone levels could be influenced 

by the development of disease so that measurements obtained closer to the date of diagnosis 

may exhibit a systematic time trend. Among subjects in the NYU Women's Health Study, 

however, a trend in estradiol levels over time was not observed in preliminary analyses using 

linear regression techniques (results not shown). 

We have also assumed that the variance components, a\ and a2, are homogeneous across 

strata and case/control status. The within-subject variance for total estradiol was estimated 

as .16 and .18 for cases and controls, respectively, indicating that the error variances are 

similar for the two groups. Because only one case was included in each stratum, we could not 

evaluate whether a2 was constant for cases and controls. Furthermore, assessing whether a2 

was homogeneous across strata was not possible, given that most strata had only 2 controls. 

The error-correction methods in this paper are applicable to studies in which a variable 

number of repeated measurements of exposure are obtained on subjects, and the average 

of each subject's measurements is used as the exposure variable. In principle, a corrected 

estimate of the logistic regression coefficient could also be obtained by utilizing only the 

first measurement of exposure for each subject, and correcting the resulting estimate by the 

reliability of a single measure. Although this method is much simpler than using all the 

available repeated measurements and applying the techniques proposed in this paper, the 

estimate based on a single measurement will not be as efficient. For example, the 95% bias- 
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corrected bootstrap confidence interval for the true ß using only the first measurements of 

total estradiol was (.52, 2.73), which is wider by 19% than the corresponding interval based 

on the transformed averages. 

Haukka (13) proposed a similar bootstrap method for correcting for measurement error 

in generalized linear models for the situation when the "gold standard" is known for the 

exposure measurement and validation, as opposed to reproducibility, data are available. 

When compared with the correction method for logistic regression proposed by Rosner et 

al (14) which also takes into account the variability in R, the bootstrap method was found 

to yield wider confidence intervals for peaked and skewed measurement error distributions. 

As discussed by Haukka (13), this difference may result because the bootstrap method takes 

better account of the measurement error variance, whereas the Rosner et al. (14) method 

is based on a first-order Taylor series approximation, which may not adequately correct 

confidence intervals when the error variance is large. 

We have shown that in situations when the magnitude of measurement error is large and 

subjects have only a few repeats, using the average of the available replicate measurements 

for each subject may not be sufficient to adjust for the measurement error. The methods 

proposed in this paper can be applied to provide additional correction procedures in the 

analysis of case-control data where subjects have a variable number of repeated measures of 

the exposure. The advantage of our algorithm is that it is conceptually straightforward and 

relatively easy to implement, especially with the amount of computing power that is now 

readily available to most investigators. 
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Table 1:  Reproducibility of Total, %Free, and %SHBG-Bound Estradiol, Adjusted 
for Case/Control Status and Matching Stratum 

Hormone 
Within-Subject    Between-Subject    Reliability 

Variance                Variance           Coefficient 
Estradiol 
% Free Estradiol 
% SHBG-Bound Estradiol 

0.17                       0.16                   0.48 
0.017                     0.036                   0.68 
9.38                     104.45                  0.92 



Table 2: Corrected and Uncorrected Logistic Regression Parameter Estimates, Con- 
fidence Intervals, and Odds Ratios for the Associations of Total, % Free, and % 
SHBG-bound Estradiol Level and Risk of Breast Cancer 

Exposure Variable Regression Coefficient 95%C.I.; Odds Ratio* 

Total Estradiol 
First measurement 0.66 (0.24 - 1.09) 2.64 

Average 0.77 (0.32 - 1.22) 3.10 
Transformed average 1.34 (0.61 - 2.47) 7.16 

% Free Estradiol 
First measurement 1.70 (0.69 - 2.71) 3.07 

Average 1.73 (0.70 - 2.77) 3.13 
Transformed average 2.42 (1.06 - 4.00) 4.95 

% SHBG-Bound Estradiol 
First measurement -0.046 (-0.068 - -0.024) 0.25 

Average -0.045 (-0.067 - -0.023) 0.26 

Transformed average -0.048 (-0.074 - -0.025) 0.24 
* Comparing women at 90    vs. 10    percentile of observed distribution 
* Total estradiol measurements were log-transformed 
* 95% C.I. using transformed average based on bias-corrected bootstrap estimate 



Appendix 

In order to generalize the techniques to the multivariate situation, assume that x,-,- denotes 

a (p x 1) vector of true covariates for the jth subject in stratum i, and that it follows 

a multivariate normal distribution with mean vector m + A for the cases and m for the 

controls, and covariance matrix E. In addition, let 

Zjjjfe =- Xjj -\- etjfc 

denote the kth observed measurement of xtJ-, for k = 1, ...n^, where the eijk are independent 

and identically distributed according to a multivariate normal distribution with covariance 

matrix, 0. 

Under these assumptions, Armstrong et al (7) showed that the probability a subject is 

a case, conditional on the mean of n repeated observations of the covariate vectors, is equal 

to the following logistic function: 

where zn = (£Li zk)/n, An = (E+n-1!))-^, and ß is the (px 1) vector of logistic regression 

parameters. 

When subjects have a variable number of replicate measures of the exposure variables, it 

follows that as in the single covariate case, one can transform the observed mean covariate 

vector for each subject by multiplying the vector by an estimate of the matrix, Ano-, and 

then fitting the usual logistic regression model to the transformed covariates to obtain the 

corrected logistic regression coefficients for all covariates. A bootstrap algorithm analogous 

to that for the single covariate case could be used to obtain corrected confidence intervals 

which take into account the variation due to estimation of Anij, but the method could become 

very computationally intensive with a large number of confounders, since more complicated 

multivariate MANOVA models would be needed to estimate S and Q.   For the special 
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case when the confounders are measured without error, however, estimation of the variance 

components is greatly simplified (see Kim et al (15)), and the bootstrap method can be more 

easily applied. 
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Chapter II 

Relation of Serum Testosterone and Dehy- 

droepiandrosterone Sulfate with Risk of Breast 

Cancer in Postmenopausal Women 



1    Introduction 

A possible role of androgens in the development of breast cancer in postmenopausal women 

was first suggested by Grattarola et al. (1974). Mechanisms by which androgens may 

increase breast cancer risk were reviewed by Secreto et al. (1991, 1994) and Bernstein and 

Ross (1993). Androgens may act directly, by stimulating breast cell proliferation through 

binding to androgen receptors or by stimulating the synthesis of growth factors inside the 

breast epithelium. Androgens may also act indirectly through their conversion to estrogens, 

which are known to stimulate breast cell proliferation (Henderson et al., 1993): aromatization 

of androstenedione and testosterone in peripheral tissues is the main source of estrogens in 

postmenopausal women. In addition, it is well established that testosterone binds to sex- 

hormone binding globulin (SHBG) with greater affinity than estradiol. Testosterone may 

thus indirectly increase the risk of breast cancer by decreasing the fraction of estradiol 

bound to SHBG and thereby increasing the nonbound fraction, which is thought to be the 

fraction available to breast cells (Siiteri et al, 1981). Finally, it has been suggested that 

testosterone inhibits hepatic secretion of SHBG (Lonning et al., 1995), which could also 

result in a decreased fraction of estradiol bound to SHBG. 

Several case-control studies have reported on the association of plasma or serum levels of 

testosterone with risk of breast cancer in postmenopausal women. Most (McFadyen et al., 

1976; Adami et al., 1979; Secreto et al. 1983; Hill et al.; 1985; Secreto et al., 1991; Bruning 

et al., unpublished data) although not all (Malarkey et al, 1977) observed higher levels of 

testosterone in cases than in controls. Among the three prospective studies which examined 

the relation of serum levels of testosterone with risk of postmenopausal breast cancer, one 

found a significant positive association (Berrino et al., 1996), one found a non-significant 

positive association (Wysowski et al., 1987) and the third reported no association (Garland 

et al, 1992). 

Dehydroepiandrosterone (DHEA) is the androgen produced by the adrenal in largest 
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quantity. The physiological roles of DHEA and of its sulfate (DHEAS), which is thought 

to be produced exclusively by the adrenal cortex (Vermeulen, 1983), are unknown. They 

are considered weak androgens, but also appear to have estrogenic properties (Seymour- 

Munn and Adams, 1983). It has been proposed that DHEA and DHEAS protect against 

breast cancer in premenopausal women, but increase breast cancer risk in postmenopausal 

women (Bulbrook, 1971; Seymour-Munn and Adams,1983). These conflicting actions could 

be reconciled by a recent hypothesis: in premenopausal women, DHEA would have an antie- 

strogenic effect by binding competitively to estrogen receptors, whereas, in postmenopausal 

women, DHEA would bind to vacant estrogen receptors and enhance estradiol-like effects, 

thereby stimulating tumor growth (Ebeling and Koivisto, 1994). 

Results from case-control studies of DHEA and DHEAS conducted in postmenopausal 

women have been mixed (Zumoff et al., 1981; Jones and James, 1987; Bernstein et al., 1990; 

Secreto et al., 1991). The three prospective cohort studies which examined the relationship 

of testosterone with breast cancer risk in postmenopausal women also measured DHEAS: one 

study (Barrett-Connor et al, 1990) reported no association whereas the two others (Gordon 

et al., 1990; Berrino, 1996) observed a non-significant positive association. 

We report here on the relation between postmenopausal serum levels of testosterone 

and DHEAS and subsequent risk of breast cancer in a case-control study nested within a 

prospective cohort, the New York University (NYU) Women's Health Study. We previously 

reported a positive association between postmenopausal serum fractions of bioavailable es- 

trogens and risk of breast cancer in this study population (Toniolo et al., 1995). A specific 

objective of our analysis was to examine whether serum levels of androgens have an effect on 

breast cancer risk independent of their influence on serum levels and biological availability 

of estrogens. 
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2    Methods 

The NYU Women's Health Study cohort 

Between March 1985 and June 1991, the NYU Women's Health Study enrolled a cohort 

of 14,275 women, 34 to 65 years old, at the Guttman Breast Diagnostic Institute, a breast 

cancer screening center in New York City. Details concerning subject recruitment have 

been published elsewhere (Toniolo et al, 1991; Toniolo et al., 1995). The current report is 

limited to the 7054 cohort members who were postmenopausal at the time of enrollment. 

Participants were classified as postmenopausal if they reported: (a) no menstrual cycles 

during the preceding 6 months, or (b) a total bilateral oophorectomy, or (c) a hysterectomy 

without complete oophorectomy prior to natural menopause and were 52 years of age or older. 

Cohort members donated 30 mL of blood and completed a self-administered questionnaire 

at enrollment. Blood was drawn prior to breast examination, between 9 A.M. and 3 P.M. in 

nonfasting women. After centrifugation, serum samples were immediately stored at —80°C 

for subsequent biochemical analyses. Women who had taken hormonal medications in the 6 

months preceding their visit were not eligible. 

Nested case-control study 

Cases of breast adenocarcinoma were identified primarily through active follow-up of the 

cohort and were confirmed by review of individual clinical and pathology records (Toniolo 

et al., 1995). For each case diagnosed in a woman who was postmenopausal at enrollment, 

two controls were selected at random from the risk set of women who were alive and free of 

disease at the time of diagnosis of the case, and who matched the case on age at enrollment 

(±6 months), date of initial blood donation (±3 months) and menopausal status. As of 

October 1991, 130 members of the postmenopausal cohort had been identified who had 
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received a diagnosis of breast cancer prior to January 1, 1991. Serum assays of follicle- 

stimulating hormone (FSH) were conducted to confirm the postmenopausal status of all the 

cases and their selected controls: three controls, who had reported the absence of menstrual 

cycles in the six months prior to enrollment, had FSH levels belowl7.5 IU/L, which was 

less than the minimal level compatible with postmenopausal status for our assay. They 

were nonetheless included in the analysis, since excluding them did not materially affect 

risk estimates. Estrogen assays (total estradiol, percent estradiol free, and percent estradiol 

bound to SHBG), were performed for all matched sets. For logistical reasons, androgen assays 

were carried out in a subset of 118 matched sets. Excluded from the analyses reported here 

are thirty-three matched sets for whom diagnosis of the case occurred 6 months or less after 

blood donation, 6 controls who reported treatment with corticosteroids in the 6 months prior 

to blood donation, and 1 control whose estrogen assays were done on a different day than 

the matching case. As a result, 85 cases (83 invasive and 2 noninvasive intraductal) and 163 

controls are included in the present report. 

Laboratory methods 

For androgen assays, serum samples that had not been previously defrosted were shipped 

in dry ice to the Netherlands Cancer Institute and analyzed in two batches. Samples from 

a case and her matched controls were always analyzed in the same batch. All assays were 

performed in duplicate with the laboratory personnel blinded to the case or control status of 

the samples. Reference sera were included for each assay in several places within each batch. 

Total testosterone was measured by a solid-phase radioimmunoassay (Coat-A-Count; 

Diagnostic Products Corp., Los Angeles, CA.) not requiring extraction or chromatography. 

The mean intra-assay coefficient of variation in the range of measurement was 6.2%. The 

inter-assay coefficients of variation were respectively 11% at 1.67, 2.2% at 10.00 and 7.0% at 

22.05 nmol/L. 
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DHEAS was measured directly in diluted serum as we have reported previously (Bruning 

et al., 1984) using an antiserum against DHEA which showed a 42% crossreactivity with 

DHEAS. As DHEA was present in serum in concentrations at least 10 times lower than 

DHEAS, it had a negligible influence on the DHEAS values, which were read from a DHEAS 

standard plot. The mean intra-assay coefficient of variation in the range of measurement 

was 3.3%. The inter-assay coefficients of variation were respectively 10% at 1.68, 9% at 2.97, 

10% at 5.51 and 8% at 15.18 (fimol/L). 

Total estradiol was measured by standard radioimmunoassay (Pantex, Inc., Santa Mon- 

ica, Calif.). Percent estradiol bound to SHBG and percent estradiol free were measured with 

a concanavalin A-Sepharose binding and an ultrafiltration method, respectively, as reported 

previously (Toniolo et al., 1995). 

Statistical methods 

When treated as continuous, total estradiol, testosterone and DHEAS were loge-transformed 

to reduce departures from the normal distribution. The paired t-test was used to compare 

hormone levels of the cases to the mean hormone levels of their matched controls. 

To compute odds ratios, hormonal measurements were categorized into quartiles, using 

the frequency distribution of the cases and the controls combined. Since the androgen assays 

were performed in two batches, quartile cut-points were calculated separately for each batch. 

The weighted averages of the cut-points are reported in the tables. 

The data were analyzed using conditional logistic regression (Breslow and Day, 1980). 

Odds ratios were computed relative to the lowest quartile. Regression analyses were also 

performed on the continuous hormonal variables. Likelihood ratio tests were used to assess 

the statistical significance of overall associations, linear trends and deviations from linearity. 

All p-values are two-sided. 

One objective of the analysis was to examine concurrently the effect of androgens and 
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estrogens. Therefore, we report on the effect of adding androgen variables to models contain- 

ing estrogen variables, and vice-versa. When adding estrogen variables to models containing 

androgen variables, percent SHBG-bound estrogen was entered first because it was the estro- 

gen variable most strongly associated with breast cancer risk in multivariate models (Toniolo 

et al, 1995). 

Hormone levels in this study were assessed from a single blood donation. For some 

hormones, however, a single measurement may not provide a reliable estimate of a woman's 

long-term average level, the exposure of interest, because of intrinsic fluctuations in the 

hormone over time and laboratory measurement error. In addition, different hormones are 

measured with varying amounts of error. For example, the reliability coefficients of total 

estradiol, percent estradiol bound to SHBG, and DHEAS, were estimated to be 0.51, 0.94, 

and 0.75, respectively, in our study population (Toniolo et al., 1994). The reliability of 

testosterone was not assessed in our study but estimates from the literature range from 

0.74 (Micheli et al, 1991) to 0.88 (Hankinson et al., 1995). We were concerned that these 

differences might distort our results regarding the relative importance of the hormones. We 

therefore applied the method of Armstrong et al. (1989) for correcting logistic regression 

parameter estimates of continuous variables for measurement error in case-control data. 

For total estradiol, percent estradiol bound to SHBG, and DHEAS, we used within-subject 

variances which we had previously estimated (Toniolo et al., 1994). For testosterone, we used 

the within-subject variance estimate provided by Hankinson et al. (personal communication, 

1996).   We assumed that the different hormonal variables had independent measurement 

errors. 

We examined the effect of Quetelet index (weight (kg) / height (ra2)) on the androgen- 

breast cancer associations, since the rate of conversion of androgens to estrogens increases 

with Quetelet index (Siiteri et al., 1973), and since the known positive association of Quetelet 

index with risk of breast cancer was confirmed in our data (Toniolo et al.,1995). The effect 

of other known risk factors (age at menarche, parity, age at first full-term pregnancy, age 
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at menopause, history of breast cancer in a first-degree relative, history of a benign breast 

condition, history of total oophorectomy, lifetime months of lactation and smoking history) 

on the androgen-breast cancer associations was also examined in multivariate conditional 

logistic analyses. The inclusion of covariates other than Quetelet index in the statistical 

analyses did not materially affect the results and are therefore not presented. In addition, 

the exclusion from the analysis of the 6 cases and 13 controls who had a total oophorectomy 

prior to enrollment in the study had no material impact on the results (data not shown). 

Results are therefore presented including these patients. 

3    Results 

Some characteristics of the study group are given in table 1. The median age at diagnosis of 

breast cancer was 61.6 years and the median duration between blood donation and diagnosis 

was 2.7 years (range 0.5 to 5.5 years). Known breast cancer risk factors had a similar 

distribution in this group as in the larger group on which estrogen assays were carried out 

(Toniolo et al, 1995). There were no appreciable differences between cases and controls in 

age at menarche, parity, age at menopause and history of prior oophorectomy. Delayed first 

full-term pregnancy, history of breast cancer in at least one first degree relative 45 years old 

or younger and history of a benign breast condition were associated with a non-significant 

increase in risk of breast cancer, while a history of breast-feeding was associated with a non- 

significant protective effect. The median weight and median Quetelet index were significantly 

higher in cases than in controls. 

Table 2 shows the geometric mean levels of testosterone and DHEAS for cases and con- 

trols. The mean testosterone level was 21% higher in cases than in controls (p < 0.01) and 

the mean DHEAS level was 20% higher (p = 0.10). 

Table 3 reports odds ratios for the association between breast cancer and serum levels of 

testosterone, total estradiol and percent estradiol bound to SHBG. In univariate analyses, 
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odds ratios showed a significant increase (p=0.02, test for trend) in risk of breast cancer with 

increasing levels of testosterone: the odds ratios for the second, third and fourth quartiles 

relative to the lowest quartile, were 2.4 (95% CI, 1.0-5.6), 3.5 (95% CI, 1.4-8.4) and 2.7 (95% 

CI, 1.1-6.8), respectively. However, adjusting for percent SHBG-bound estradiol, which was 

the estrogen variable most strongly associated with breast cancer risk, reduced the odds ra- 

tios and removed the significant trend. The odds ratios were 1.5 (95% CI, 0.6-3.7), 2.0 (95% 

CI, 0.7-5.2) and 1.3 (95% CI, 0.5-3.7) for second, third and fourth quartiles respectively. 

Adding total estradiol to the model including testosterone and percent SHBG-bound estra- 

diol did not significantly improve the fit of the model, although it further reduced the odds 

ratios to 1.4 (95% CI, 0.6-3.5), 1.8 (95% CI, 0.7-5.0) and 1.2 (95% CI, 0.4-3.5) respectively. 

Adding percent free estradiol or Quetelet index to the model containing testosterone, estra- 

diol and percent estradiol bound to SHBG did not materially affect the odds ratios (data 

not shown). A strong positive association between breast cancer risk and increasing levels 

of total estradiol was also present in univariate analysis. This association remained signifi- 

cant after adjusting for testosterone levels, although the odds ratios and the corresponding 

p-value were somewhat reduced. The protective effect associated with increasing percentage 

of SHBG-bound estradiol was hardly affected by adjustment for testosterone levels. In the 

model including the 3 hormonal variables, only the percentage of estradiol bound to SHBG 

remained significant. Analysis on continuous variables showed similar results. 

Results of the analyses correcting for measurement error were similar to results of the 

uncorrected analyses with respect to the relative strength of the associations of the hormonal 

variables with breast cancer risk: the positive association of testosterone was weakened and 

no longer significant after adjusting for percent SHBG-bound estradiol, whereas the positive 

association of total estradiol became only marginally significant and the negative association 

of percent SHBG-bound estradiol remained highly significant after adjusting for testosterone. 

In the model including the three variables, only percent SHBG-bound estradiol remained 

significant. 
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Table 4 reports odds ratios for the association between breast cancer risk and increasing 

levels of DHEAS. In unadjusted analyses, although the odds ratio in the highest quartile 

was slightly elevated (1.6, 95% C.I: 0.7-3.5), there was no trend of increasing risk of breast 

cancer with increasing levels of DHEAS. The inclusion of estrogen variables or of Quetelet 

index did not result in a significant trend. The odds ratios for the association between breast 

cancer risk and DHEAS are shown adjusting for percent SHBG-bound estradiol and total 

estradiol. Inclusion of DHEAS in models containing estrogen variables did not materially 

affect the associations between estrogen variables and breast cancer risk (data not shown). 

Correcting for measurement error in the hormonal variables did not alter the results. 

Finally, analyses were conducted using only the 56 matched sets with at least two years 

between blood donation and diagnosis of the case. The results were similar to the results of 

analyses conducted in the larger group, both for testosterone and DHEAS (data not shown). 

Table 5 reports the Spearman correlation coefficients for hormone levels and Quetelet 

index, by case-control status. Note that testosterone was correlated positively with total 

estradiol (rs = 0.23 in cases and 0.27 in controls) and negatively with percent estradiol 

bound to SHBG (rs = -0.27 in cases and -0.33 in controls). 

4    Conclusions 

In unadjusted analyses (except for matching variables), we observed a statistically signif- 

icant trend of increasing risk of breast cancer with increasing serum levels of testosterone 

in postmenopausal women. Since all cases were diagnosed at least 6 months after blood 

donation (median 2.7 years) and since a similar trend was observed when the analysis was 

limited to the two-thirds of the cases diagnosed at least two years after blood donation, it 

seems unlikely that the higher levels of testosterone observed in women who subsequently 

developed the disease, compared with controls, resulted from the presence of tumors. 

Three previous prospective studies have examined the association between serum levels of 
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testosterone and breast cancer risk in postmenopausal women. No association was observed 

in the Rancho Bernardo, California, study, in which the age-adjusted mean testosterone level 

was 258 pg/ml in 15 cases diagnosed at least 1 year after blood donation and 261 pg/ml in 

400 noncases (Garland et al., 1992). However, results from the two other prospective studies 

are consistent with ours. In the Washington County, Maryland, study, serum levels were 

11% higher in 39 cases (mean 304 pg/ml) than in 155 controls (mean 274 pg/ml), although 

this difference was not statistically significant (Wysowski et al., 1987). Finally, in 24 cases 

diagnosed during the first 3.5 years of follow-up of a cohort of 4040 postmenopausal women 

from northern Italy, the risk ratios for breast cancer associated with the second and third 

tertiles of testosterone were 4.8 (95% CI 0.9-25.1) and 7.0 (95% CI 1.4-36.4), respectively (p 

for trend = 0.026, Berrino et al., 1996). 

We recently reported a positive association between bioavailable estrogens and subse- 

quent risk of breast cancer in a slightly larger group of postmenopausal women from the 

NYU Women's Health Study (Toniolo et al., 1995). An objective of the present analysis was 

to examine whether androgens had an effect on breast cancer risk that was independent of 

their influence on serum levels and biological availability of estrogen. Results showed that, 

after including estrogen variables (percent SHBG-bound estradiol and total estradiol) in our 

statistical model, the odds ratios associated with higher levels of testosterone were consid- 

erably reduced, and there was no longer a significant trend. A similar result was recently 

observed in the re-analysis of a population-based case-control study conducted in Sweden 

(Adami et al. 1979; Lipworth et al, 1996). Whereas in univariate analysis, a significant 

positive association was found between testosterone and breast cancer risk, the association 

disappeared after controlling for estrone (and androstenedione). On the other hand, Berrino 

et al. (1996) did not observe a reduction of the association between breast cancer risk and 

levels of testosterone when adjusting for total estradiol. However, multivariate analysis was 

hampered by the small sample size of the study (24 cases). 

We were concerned about the impact of measurement error in the hormonal variables on 
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our results. It is well known that in the absence of confounders, non-differential measurement 

error in an exposure variable will result in an attenuation of the true exposure/disease 

relationship. When several variables are measured with error, however, the associations of 

these variables with disease in a multivariate model may be weaker or stronger than the true 

associations (Armstrong et al., 1990). It is reassuring that, in our analysis, correcting for 

measurement error did not affect the relative strength of the associations of the hormonal 

variables with risk of breast cancer. 

Our results are consistent with the hypothesis that testosterone has an indirect effect 

on breast cancer risk, through its association with estrogen levels. The fact that percent 

SHBG-bound estradiol was the estrogen variable which caused the greatest reduction in 

the testosterone-breast cancer odds ratios suggests that the effect of testosterone on the 

bioavailability of estrogens may be more important than its role as a precursor of estrogens. 

An increase in the serum levels of testosterone could lead to a decrease in the percentage 

of estradiol bound to SHBG since testosterone binds to SHBG with greater affinity than 

estradiol. However, the modeling studies performed by Dunn et al. (1981) as well as in 

vitro experiments (Bonfrer et al, 1989) indicate that higher concentrations of testosterone 

would be required to observe such an effect. Inhibition of the hepatic secretion of SHBG 

by testosterone could also result in a decrease in percent SHBG-bound estradiol, since small 

changes in SHBG concentration can produce an important reduction in the percentage of 

hormone bound to this protein (Selby, 1990). In support of this hypothesis a moderate 

negative correlation between testosterone and SHBG was reported by some (Haffner et al., 

1995; Lonning et al., 1995; Maggino et al., 1993) although not all (Lipworth, 1996) studies. 

A limitation of our study is that only total testosterone was measured. The free and 

albumin-bound hormone fractions might be more relevant biologically since these fractions 

are thought to diffuse readily into the cells (Pardridge et al, 1981). Indeed, with regard to 

estrogen, the variable most strongly related to risk of breast cancer was the percent SHBG- 

bound estradiol which had a protective effect. Thus, we cannot exclude the possibility that 
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the free and albumin-bound fractions of testosterone might have an independent effect on 

breast cancer risk. 

The lack of an association between DHEAS and breast cancer observed here is consistent 

with the results of the previous prospective studies which examined the role of this hormone 

in postmenopausal women. Barrett-Connor et al. (1990) measured DHEAS levels in a cohort 

of 534 women, 50 to 79 years old, among whom 21 subsequently developed breast cancer, 

and reported no difference between cases and non-cases. In a case-control study nested 

within a cohort of approximately 13,000 female residents of Washington County, Maryland, 

Gordon et al. (1990) reported that serum levels of DHEA were significantly higher in 30 

postmenopausal women who developed breast cancer 9 years or more after blood donation 

than in 59 matched controls. However, no statistically significant difference in DHEAS 

levels was observed, although serum levels of DHEAS were slightly higher in the women 

who developed breast cancer than in the controls. Finally, an increase in the odds ratios for 

breast cancer was observed with increasing serum levels of DHEAS in the ORDET study 

but this trend was not statistically significant (Berrino et al., 1996). Overall, there is little 

epidemiologic evidence that DHEAS plays an important role in breast cancer development 

in postmenopausal women. 

In conclusion, elevated serum levels of testosterone were found to be associated with 

subsequent risk of breast cancer in postmenopausal women. However, this association was 

considerably reduced and no longer significant after taking into account the effect of serum 

estrogen levels on breast cancer risk, suggesting that androgens act through their influence on 

the availability of estrogens via SHBG binding and/or as precursors of estrogens. There was 

no evidence that the adrenal androgen DHEAS plays a role in breast cancer development 

in our study. In light of these results, additional research to identify factors influencing 

testosterone levels in healthy postmenopausal women would be of interest. Among life-style 

factors such as smoking, obesity, diet, alcohol consumption and exercise, only obesity has 

been found to be marginally associated with higher levels of testosterone (Cauley et al., 1989; 
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Newcomb et al., 1995). 
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Table 1. Study group characteristics. 

Median (range ;) or percent 

Cases (n=85) Controls (n=163) 

Age at blood donation 59.2 (48.9-65 4) 59.1(48.9-64.9) 

Age at diagnosis 61.6 (52.2-68 6) 

Age at menarche 13 (9-16) 13 (10-17) 

No. of full-term pregnancies 

0 24.7% 23.9% 

1 17.6% 13.5% 

>1 57.6% 62.6% 

Age at first full-term pregnancy 25 (16-41) 24 (16-43) 

Ever breast-feeding 20.8% 28.2% 

Age at menopause 51.7 (31.6-57. 2) 50.9 (24.9-58.6) 

Breast cancer in first degree relative 

< 45 years old 8.2% 3.7% 

Prior benign breast condition 57.7% 46.7% 

Prior bilateral oophorectomy 7.0% 8.0% 

Height, cm 162.6 (149.9-177.8) 162.6 (147.3-177.8) 

Weight***, kg 70.3 (47.6-122.5) 62.6 (45.4-124.7) 

Quetelet's index***, kg/m2 26.1(19.9-43. 6) 24.0 (17.7-44.4) 

p< 0.001, paired t-test 



Table 2. Geometric mean, geometric standard deviation and range of serum levels of 

testosterone and DHEAS in breast cancer patients diagnosed at least 6 months after blood 

donation, and their individually-matched controls. 

Cases (n=85) Controls (n=163) 

* p = 0.10, paired t-test 

** p < 0.01, paired t-test 

Testosterone (nmol/L) 

Mean** (S.D.) 1.05 (1.79) 0.87 (1.89) 

Range 0.20-3.96 0.14-5.96 

DHEAS (nmol/L) 

Mean* (S.D.) 2.36 (2.37) 1.96 (2.26) 

Range 0.22-14.60 0.12-10.43 



Table 3. Odds ratios for the association between breast cancer risk and serum levels of testosterone, total 

estradiol and percent SHBG-bound estradiol. 

Hormonal variable by 

quartiles OR1- (95% CI) OR2 (95% CI) OR3 (95% CI) 

Testosterone4 

1 1.0 1.0 1.0 

2 2.4(1.0-5.6) 1.5 (0.6-3.7) 1.4(0.6-3.5) 

3 3.5 (1.4-8.4) 2.0 (0.7-5.2) 1.8 (0.7-5.0) 

4 2.7(1.1-6.8) 1.3 (0.5-3.7) 1.2 (0.4-3.5) 

p for trend * N.S. N.S. 

Total estradiol5 

1 1.0 1.0 1.0 

2 2.0 (0.8-5.3) 1.8 (0.7-4.8) 1.7(0.6-4.7) 

3 4.3 (1.8-10.4) 3.6 (1.4-9.0) 2.6(1.0-6.8) 

4 3.8 (1.5-10.3) 2.9(1.0-8.3) 1.6 (0.5 - 5.8) 

p for trend *** * N.S. 

% SHBG-bound 

estradiol6 

1 1.0 1.0 1.0 

2 0.43 (0.19-0.98) 0.44(0.19-1.01) 0.44(0.19-1.05) 

3 0.19(0.07-0.49) 0.20 (0.07-0.56) 0.21 (0.07-0.59) 

4 0.05 (0.01-0.17) 0.05 (0.01-0.19) 0.05 (0.01-0.21) 

p for trend *** *** *** 

* p < 0.05       ** p < 0.01       *** p < 0.001 

'Unadjusted, except for matching factors (age and serum storage time). 
2 For testosterone, ORs are adjusted for % SHBG-bound estradiol; for total estradiol and % SHBG-bound estradiol, 

ORs are adjusted for testosterone. 
3 Adjusted for other hormonal variables in the table. 
4 The cut-points defining quartiles of testosterone were 0.73,1.02 and 1.45 nmol/mL. 
5 The cut-points defining quartiles of total estradiol were 20,30 and 45 pg/mL. 
6The cut-points defining quartiles of percent SHBG-bound estradiol were 34.4,43.6 and 51.3%. 



Table 4. Odds ratios for the association between breast cancer risk and serum levels of DHEAS. 

Quartiles of DHEAS1 OR2 (95% CI) OR3(95%CI) 

1 1.0 1.0 

2 0.7(0.3-1.5) 0.3(0.1-0.9) 

3 1.0(0.5-2.1) 0.5 (0.2-1.3) 

4 1.6 (0.7-3.5) 0.9 (0.4-2.3) 

p for trend N.S. N.S 

1 The cutpoints defining quartiles of DHEAS were 1.33, 2.38 and 3.58 nmol/L. 
2 Unadjusted, except for matching factors (age and serum storage time). 
3 Adjusted for percent SHBG-bound estradiol and total estradioL 



Table 5. Spearman correlation coefficients for androgen and estrogen levels and Quetelet index. 

Controls ( n = 163) 

DHEAS Total % SHBG- % free Quetelet 

estradiol bound 

estradiol 

estradiol index 

0.27*** -0.33*** 0.25** 0.30*** 

0.23** -0.27*** 0.25** 0.05 

-0.48*** 0.45*** 0.43*** 

-0.72*** -0.52*** 

0 4g*** 

Testosterone 

DHEAS 

Total estradiol 

% SHBG-bound 

estradiol 

% free estradiol 

0.35 *** 

Cases (n = 85) 

Testosterone 

DHEAS 

Total estradiol 

% SHBG-bound 

estradiol 

% free estradiol 

DHEAS 

0.38 *** 

Total % SHBG- % free Quetelet 

estradiol bound 

estradiol 

estradiol index 

0.23* -0.27* 0.12 0.11 

0.28* -0.37*** 0.24* -0.06 

-0.47*** 0.19 0.38*** 

-0.56*** -0.42*** 

0.29** 

p<0.05       **p<0.01      ***p< 0.001 



Chapter III 

Adjusting Hormone Levels for Day of Men- 

strual Cycle in Pre-Menopausal Women 



1     Introduction 

Although levels of prolactin and bioavailable estradiol appear to be relatively stable over 

the phases of a woman's menstrual cycle, other hormones, such as total estradiol, fluctuate 

considerably. (Toniolo et al., 1993; Koenig et al., 1993.; Wu et al., 1976; Takatani et al, 

1991). Epidemiologie studies investigating the association of total estradiol and risk of breast 

cancer among premenopausal women must adjust a subject's hormone level for day of cycle 

either in the design or analysis stage of the study, in order for the comparisons between cases 

and controls to be valid. 

In the NYU Women's Health Study, a nested case-control study of serum hormonal levels 

and breast cancer, one of the criteria for matching controls with a breast cancer case among 

pre-menopausal women was the day of menstrual cycle on which the first blood specimen was 

collected, measured in number of days prior to next expected onset of menses. Subsequent 

blood donations, however, could not be matched on day of cycle. Therefore, a method 

was needed to standardize hormone measurements obtained at different times during the 

menstrual cycle for subjects in the same matched set. 

Rosenberg et al (1994) used the first measurement from each control subject to fit a three- 

piece spline model to describe the change in total estradiol level over the menstrual cycle. 

For each subject, the estradiol measurement adjusted for day of cycle was then calculated 

as the difference between the observed value and the expected value from this calibration 

curve, measured in units of standard deviation. The limitation with this approach, however, 

is that because only the first measurement from each subject was used to fit the calibration 

curve, the curve is estimated with less precision than one that is estimated using all available 

repeated measurements. In addition, the width of the confidence intervals for the relative 

risks for breast cancer based on the adjusted estradiol measurements are underestimated, 

since they do not take into account the extra variation due to estimation of the parameters 
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of the calibration curve. 

We propose an alternative method for describing the within-subject change in estradiol 

levels over the menstrual cycle, based on a mixed linear model with cubic splines, which 

utilizes all the repeated measurement data for each subject. The use of cubic splines in the 

model yields a smoother curve than the one fit by Rosenberg et al, which was based on a 

three-piece spline: two parabolas and a straight line, without smoothed join points. 

We use the results from the mixed linear model to adjust each subject's hormone level for 

day-of-cycle. The adjusted measurement then becomes the exposure in a conditional logistic 

regression analysis. Bootstrap methods are utilized to obtain estimates of the corresponding 

95% confidence intervals for the regression coefficients which account for the variation in the 

estimated calibration curve. Methods for correcting for error-in-measurement of the hormone 

levels are also discussed. 

2    Methods 

Let y; = {yn, -.,2/ifc,} denote the vector of hormone levels for the ith woman measured on &,■ 

occasions for i = l,...n. Furthermore, let t,- = {tn,...,tiki} denote the vector of the number 

of days prior to next menses at which the yt- were measured. We assume a mixed linear 

model of the form 

yi:j = n + a{ + S(tij) + tij 

where fj, denotes an overall mean, on denotes a random subject effect from a JV(0, a2
a) distri- 

bution, S(tij) is a cubic spline function, and the etj are independent errors from a iV(0,cr?) 

distribution. We further assume that the subject effects and the error terms are mutually 

independent. The above model implies that the correlation between repeated measurements 

of hormones on the same subject is equal to (T2/(al 4- a2
e). 

We chose to use cubic splines to model estradiol levels versus day of cycle because this 

method provides great flexibility in fitting models, is visually smoth, and requires fewer 
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constants to fit than higher degree splines. Rosenberg et al utilized two parabolic and one 

linear function to describe the change in estradiol over the menstrual cycle, with only a 

single continuity restriction. Thus, although their overall function was continuous, it was 

not smooth at the two join points. 

When fitting a cubic spline model, more join points or knots are better if the variable 

changes quickly over the covariate space. However, too many knots can lead to over-fitting 

of the data and more parameters to estimate. Stone (1986) suggested that 5 knots should 

provide enough flexibility for a reasonable number of degrees of freedom. 

Given that the average length of a menstrual cycle is 28 days, we positioned 5 knots at 

the 5 day intervals: 5, 10, 15, 20, and 25 days prior to next menses. Using the + notation 

of Smith (1979), let 

u+ = u        if        u > 0 

u+ = 0        if       u < 0. 

Then the cubic spline can be specified as: 

S(t)   =   ßo + ßit + ß2t2 + ßst3 + ßi(t- 5)5. + ßs(t- 10)* 

+ ß6(t - 15)5. + /M* " 2°)+ + Ä(* - 25)+- 

It follows that the overall mixed linear model has the following form: 

Vii   =   fi + ai + hUi + Mj + Mj + ßtfc- 5)+ + ßs(Uj-10)1 

+ ßefc - 15)5. + fr&i ~ 2°)+ + &(** " 25)+ + e«i        (X)- 

This model assumes that the shape of the function describing the change in estradiol over 

the menstrual cycle is the same for all subjects, but that subjects can differ with regard to 

their baseline level on day 0. 

Several techniques can be utilized to obtain estimates for the variance components and 

regression parameters in a mixed linear model, including traditional analysis of variance 
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(ANOVA) methods, maximum likelihood (ML) methods, and restricted maximum likelihood 

(REML) methods. REML estimates of the variance components are generally preferred, since 

ML estimates do not take into account the degrees of freedom used to estimate the fixed 

effects, which can result in estimates of variance components which are downwardly biased 

(Laird and Ware, 1982). The ANOVA methodology also has limitations, especially with 

unbalanced data, such as negative variance estimates, and lack of distributional properties 

(Searle et al). For these reasons, we used the REML method from the SAS PROC MIXED 

procedure to fit model (1). 

Once the parameters in model (1) are estimated, estradiol levels adjusted for day of cycle 

can be computed using several approaches. One approach is to calculate the deviation of 

the subject's observed value from the expected value for that day of the cycle based on the 

fitted curve: 

Xij = Vij ~ S(Uj). (2) 

Similarly, when repeated hormone measurements are available on all subjects and the average 

hormonal level is used as the exposure, the average adjusted for day of cycle can be calculated 

as: 

*i. = {EN* " £(<0')}/n- (3) 
3 

An alternative approach is to use the estimate of the random subject effect, a,-, from (1) 

for each i = 1,..., N. The best linear unbiased predictor (BLUP) of a,- is E(ai\yi,ß,cr'2
s,al), 

the expected value of a,-, conditional on y,-,0,£*, and a*, which is also the empirical Bayes 

estimator of a,-. It can be shown that 

E(at\yiJ,a2
s,*t) = Rn,(yi - S(^)/nt), (4) 

where 

» O     ,     IT? 

Note that Rni can also be interpreted as the reliability coefficient of ?/,-. 
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Estradiol levels adjusted for day of cycle can be computed using one of the above ap- 

proaches for all subjects and then used as the exposure in the usual logistic (or conditional 

logistic for matched studies) regression model to evaluate the association between estradiol 

level and risk of breast cancer among pre-menopausal women. The estimates of the standard 

errors for the regression parameter will be underestimated, however, since the uncertainty 

associated with the estimates for the calibration curve are not taken into account. In this pa- 

per, we utilize a bootstrap algorithm for obtaining estimates of the confidence intervals which 

include the variability contributed by estimation of the calibration curve. The algorithm is 

described in the next section. 

3    Results 

The primary aim of the NYU Women's Health Study is to determine whether endogenous 

hormones such as estradiol, are associated with risk of breast cancer. Between March 1985 

and June 1991, a cohort of healthy women aged 34-65 years were enrolled at the Guttman 

Breast Diagnostic Institute, New York. At the time of enrollment and at annual screening 

visits thereafter, women were asked to donate blood and complete a self-administered ques- 

tionnaire. Serum samples were frozen and stored for future biological assays. Subsequent 

cases of breast cancer were identified primarily through active follow-up and confirmed by 

reviewing medical and pathological records. 

In order to limit the costs associated with measuring hormone levels in the cohort, a 

nested case-control study design was used. For each incident case of breast cancer, indi- 

vidually matched controls were selected at random from the risk set consisting of all cohort 

members alive and free of breast cancer at the time of diagnosis of the case, and who matched 

the case on menopausal status at entry, age at entry, and number and approximate dates of 

blood donations up to the date of diagnosis in the case. For additional details of the study 

design, see Toniolo et al (1991). The association between endogenous estrogens and breast 
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cancer in post-menopausal women was reported in Toniolo et al (1995).  In this paper, we 

focus on the association between total estradiol and risk of breast cancer in pre-menopausal 

women. 

A total of 498 estradiol measurements from 367 pre-menopausal control subjects were 

utilized to fit the calibration curve: 278 subjects had 1 measurement, 60 had 2, 28 had 3, 

and 4 had 4 measurements. Only measurements obtained less than 35 days prior to next 

menses were included. Total estradiol levels were log transformed prior to model fitting to 

adjust for deviations from normality. 

The estimated mean curve describing the change in log estradiol level over the men- 

strual cycle is shown in Figure 1. The parameters in model (1) were estimated as follows: 

fi = 4.16, h = .36, & = -.029, & = -.00067, & = .00061, & = -.012, & = .012, & = 

-.0077, #5 = -0052. These estimates were then used to calculate levels of total estradiol 

adjusted for phase of menstrual cycle using the three approaches described above. 

The results from fitting conditional logistic regression models to the adjusted total estra- 

diol levels are shown in Table 1. The estimate of the logistic regression coefficient based on 

the adjusted first and average measurements calculated from (2) and (3), respectively, are 

similar to the estimate using the unadjusted first measurement because in the original study 

design, cases were matched to controls according to the phase of menstrual cycle of the first 

measurement. 

In contrast, when the emprical Bayes estimator from (4) was utilized as the exposure, 

the regression coefficient estimate increased substantially. This increase is not surprising, 

given that the estimator in (4) can be viewed as an estimator of (3) that has been corrected 

for measurement error. Whittemore (1989), and Armstrong, Whittemore and Howe (1989), 

have proposed analogous forms of (4) as a method for correcting for measurement error in 

linear and logistic regression models. The method, commonly referred to as "Stein shrink- 

age" , involves multiplying an exposure variable measured with error by the reliability of the 

exposure prior to fitting the regression model to obtain corrected coefficient estimates.  In 
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the absence of confounders, measurement error in the exposure variable will result in relative 

risk estimates that are attenuated compared to the true relative risk. It follows that meth- 

ods which correct for measurement error should yield higher estimates of relative risk than 

the uncorrected estimates, and that the regression coefficent based on the empirical Bayes 

estimator should be higher than the uncorrected average. 

The width of the confidence intervals in Table (1) are underestimated, however, because 

the extra variability due to estimation of the calibration curve is not taken into account. To 

obtain standard errors which incorporate this additional source of variation, we propose the 

following bootstrap procedure: 

1. Generate a bootstrap sample from the control subjects. 

2. Fit model (1) to the bootstrap sample to estimate the parmeters of the calibration 

curve 

3. Generate a bootstrap sample from the matched cases and controls, using the matching 

stratum as the sampling unit. 

4. Adjust the total estradiol measurements for day of menstrual cycle using the estimates 

from step (2). 

5. Fit conditional logisitc regression models to the adjusted total estradiol measurements. 

6. Repeat (l)-(4) 1,000 times, which is the approximate minimum number of bootstraps 

necessary to compute bias-corrected confidence limits. 

The simple (1 - a)% confidence interval can be constructed using the a/2 and (1 - a/2) 

percentiles of the bootstrap distribution. Bias- corrected confidence intervals should be used 

when the bootstrap distribution of the regression parameter is asymmetric and when the 

sample size is small. 

61 



4     Conclusions 

This work is still in progress. In the next year of this project, the bootstrap procedure 

described above will be implemented to obtain more valid confidence intervals. A manuscript 

describing the method and results will also be prepared. 
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Table 1: Logistic Regression Parameter Estimates and 95% Confidence Intervals for 
the Associations of Total Estradiol Level and Risk of Breast Cancer in Pre-menopausal 

Women 

Exposure Variable 
Total Estradiol 

First measurement 
Adjusted first measurement 
Adjusted average 
Empirical Bayes adjusted average 

Regression Coefficient 95%C.I. 

0.19 
0.26 
0.17 
1.52 

(-0.23 
(-0.17 
(-0.28 
(-0.83 

0.61) 
0.70) 
0.63) 
3.87) 
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Abstract. Most studies on the half-lives of environmental con- 
taminants have been based on small sample sizes and a limited 
number of repeated measurements. In this paper, we address 
issues of study design and sample size for half-life studies. 
Useful guidelines are provided for choosing the number of 
repeats and the optimal time interval between repeats for esti- 
mating an individual's half-life with a given level of precision, 
while minimizing the cost of the study. In addition, sample size 
and power considerations for studies comparing two population 
half-lives are investigated. An example is presented using data 
from a study on polychlorinated biphenyls and breast cancer. 

The accumulation of PCBs (polychlorinated biphenyls) and 
DDE (1,1 dichIoro-2,2-Z?is(>-chIorophenyl) ethylene) residues 
and other environmental contaminants in the body may poten- 
tially have adverse health effects. Individuals who are able to 
clear these toxic compounds from the body at a faster rate, and 
thus have shorter half-lives, may be at lower risk of diseases 
associated with the toxins. Thus, in order to fully elucidate 
the role of environmental contaminants in the development of 
disease, their rates of persistence in the body must be accu- 
rately quantified. 

Previous studies estimating the half-life of PCBs have yielded 
inconsistent results. Reported estimates of half-life range from 
.5 months to 17 years for PCB mixtures. (Yakushiji et al. 1984; 
Phillips et al. 1989; Elo et al. 1985; Lawton et al. 1985). For 
specific PCB components, half-lives have been estimated to be 
from less than 1 year to about 30 years (Yakushiji et al. 1984; 
Chen et al. 1982). Similarly, data on the half-life of DDE are 
variable and limited. 

The lack of consistency among study estimates of half-life 
may be largely due to the small sample sizes and limited number 
of repeated measurements per subject utilized in these studies. 
For example, Chen et al. (1982) examined the rates of elimina- 
tion of PCBs from the blood of PCB-poisoned subjects in 
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Taiwan using two to three serial blood samples from 17 individ- 
uals taken over a period of 6-14 months. Similarly, Steele et 
al. (1986) calculated the half-life of PCBs using two measure- 
ments of PCB concentrations made 7 years apart. 

Phillips (1989) investigated how analytical (laboratory) error 
and the time interval between measurements affect the variabil- 
ity and possible bias in estimates of half-life calculated from 
two measurements. The results indicated that half-life estimates 
based on only two measurements become increasingly variable 
at shorter time intervals between measurements and at higher 
levels of analytical error. 

The precision of half-life estimates, however, is not only 
dependent on the magnitude of analytical error and the time 
interval between measurements, but also on the number of 
repeated measurements utilized in the estimation procedure. 
Given laboratory cost constraints, time constraints, and other 
limitations on the physical resources of a study on half-life, 
investigators must decide where to allocate the resources in 
order to obtain the most precise estimate of half-life. 

Issues of sample size and study design for estimating subject- 
specific, as well as population, half-lives of environmental con- 
taminants have not been formally addressed in the environmen- 
tal and epidemiologic literature. The objectives of this paper 
are to provide useful guidelines for choosing the number of 
repeats and the optimal time interval between repeats needed 
for estimating an individual's half-life with a given level of 
precision, while minimizing the cost of the study. In addition, 
sample size and power considerations for studies comparing 
the population half-lives between two groups will be investi- 
gated. An example is presented using data from a study on 
PCBs and breast cancer. 

Methods 

For most environmental toxins, the rate of elimination from 
the body may be described by the following one-compartment 
exponential decay model: 

C(t) = Coe-", (1) 

where C(t) is the concentration of the toxin at time t, C0 denotes 
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the initial concentration, and X is the rate constant. The half- 
life, fi/2, which is the time after which the level of toxin is 
reduced to half its original value, is equal to ln(2)/X. 

If both sides of (1) are log-transformed, then we have the 
linear relationship: 

V(f1/2) = ln(2)2|f 
1 \ <£{W 
\)    D2k(k + 1) 

1)} 

= (lis\ Hi 
\\DJ 

o*{12(lfc-l)} 
k(k + 1) 

(4) 

ln{C(/)} = ln(Co) - \t. (2) 

Thus, given C(t) = {C(t,),..., C(?t)}, the set of serial measure- 
ments of the toxin obtained on a subject at times, {f,,..., tk), 
the rate constant, \, may be estimated from the slope of the 
linear regression of ln{C(t)} versus t. The least-squares estimate 
of X is_equal to X = 2j=,{In {C(f,)} - C}(/,- - 7)/2j=l(fy - If, 
where C and r denote the average logarithm of the level of 
toxin and average time of measurement, respectively. The cor- 
responding half-life for the subject may be estimated by tm = 
ln(2)/X. 

The sample size and study design issues associated with 
estimating the half-life will depend on whether the focus is on 
obtaining a precise estimate of an individual's half-life or a 
population half-life. The former would be of interest, for exam- 
ple, in studies exploring the relationship between an individual's 
rate of elimination of the toxin with a particular genetic charac- 
teristic. On the other hand, a precise estimate of a population 
half-life would be pertinent when the investigator is interested 
in comparing the average half-lives between two or more 
groups, such as diseased and non-diseased subjects. 

Study Design for Estimating Individual Half-Lives 

If the goal is to estimate individual half-lives with a certain 
level of precision, then clearly, the number of subjects to include 
in the study is not relevant. The frequency of measurement and 
duration of follow-up are the primary factors that will determine 
the precision of the individual's half-life estimate. This can be 
shown as follows. 

The variance of X, the least-squares estimate of the rate 
parameter, is equal to oi/2)=1(f, - I)2, where &l is the variance 
of the deviation of the observed ln{C(t)} from the value pre- 
dicted by the regression line in (2). Then, using the Delta 
method (Cox and Hinkley 1974), the variance of iM is equal to, 

V(tM) = ln(2)21- d 
2M', - ?y 712" (3) 

Let t = {tu t2, ..., tt) denote k equally spaced points in 
time, where the time interval between points is equal to /. Then 
the study duration, D, is equal to I(k — 1). Following the 
arguments in Schlesselman (1973), we can express 2*=i(f; — 
t )2 as a function of D and k: 

I>-*>2 

j-i 

Efkjk + 1) 
{12(*-l)r 

Thus, (4) describes how the precision of im is a function of 
the study duration, D, the number of »repeated measurements 
on a subject, k, CT,, and X. For fixed values of the underlying 
rate parameter, X, and a,, the variance of tm is directly propor- 

.     , In(2)212(£ - 1)  0 L1      , J    U] tional to a = : . Schlesselman presented tables 
D2k(k +1) F 

that show how the precision of a slope changes over different 
values of k and D. Table 1 describes analogous results for 
the precision of the half-life. Specifically, we calculated a> for 
various values of k and D. One can see how <o, and thus, the 
variance of the half-life, decreases as the number of repeats 
and the duration of study increases. The exception, however, 
is that for a fixed duration of study, obtaining 3 measurements 
does not result in additional precision compared with 2 measure- 
ments. (This is due to the algebraic result that the term (k — 
l)/k(k + 1) in (4) is the same for k — 2 or 3.) Furthermore, 
for large k, the variance of i'm is proprotional to l/iEPk). Thus, 
a unit increase in the duration of the study will result in greater 
precision of the half-life estimate than a unit increase in the 
number of repeated measurements. Finally, note that some com- 
binations of k and D will yield the same level of precision. For 
example, 10 measurements obtained over 7 months result in 
the same precision as 7 measurements over 8 months, and 3 
measurements over 10 months. 

The choice between different pairs of (k, D) for estimating 
the half-life will depend upon the relative costs of each measure- 
ment and each time interval of follow-up (which may include 
staff salaries and other administrative costs). If the two costs 
are equivalent, then results from Table 1 suggest that resources 
should be directed toward extending the duration of the study, 
since this will result in larger gains in precision than will increas- 
ing the number of measurements. When the costs of (it, D) 
differ, however, the allocation of resources that will result in 
the most precise estimate of tm is less clear. 

For each subject, let C = c,k + c2D equal the total cost of 
measuring the subject k times over a duration of D years, where 
c, denotes the cost of an individual measurement, and c2 denotes 
the cost per year of follow-up. Assume that the goal is to 
estimate an individual's half-life with variance equal to V^ while 
minimizing the total cost per study subject If we make the 
simplifying assumption that for large k, 

*-"»$%-$ 
12oj 

k ' (5) 

then a Lagrange multiplier may be used to minimize C subject 
to the constraint in (5). After some algebraic manipulations, 
we have the result 

-m^-m^tfi (6) 

It follows that the variance of im can be expressed as: and 
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Table 1. Values of w (X10) as a function of the number of repeats, k, and the duration of study, D 

D 

k 1 2 3 4 5 6 7 8 9 10 

2 9.609 2.402 1.068 0.601 0.384 0.267 0.196 0.150 0.119 0.096 
3 9.609 2.402 1.068 0.601 0.384 0.267 0.196 0.150 0.119 0.096 
4 8.648 2.162 0.961 0.541 0.346 0.240 0.176 0.135 0.107 0.086 
5 7.687 1.922 1.854 0.480 0.307 0.214 0.157 0.120 t, 0.095 0.077 
6 6.864 1.716 0.763 0.429 0.275 0.191 0.140 0.107 ,; '0.085 0.069 
7 6.177 1.544 1.686 0.386 0.247 0.172 0.126 0.097 0.076 0.062 
8 5.605 1.401 0.623 0.350 0.224 0.156 0.114 0.088 0.069 0.056 
9 5.125 1.281 0.569 0.320 0.205 0.142 0.105 0.080 0.063 0.051 

10 4.717 1.179 0.524 0.295 0.189 0.131 0.096 0.074 0.058 0.047 
15 3.363 0.841 0.374 0.210 0.135 0.093 0.069 0.053 0.042 0.034 
20 2.608 0.652 0.290 0.163 0.104 0.072 0.053 0.041 0.032 0.026 

.'•'" 

»-{^"-{^ (I) (*)■}"• (7) 

as the optimal values of k and D that will minimize the cost 
for a specified level of precision, V. As expected, the optimal 
it and D depend on c2/ch the ratio of the cost per month of 
follow-up to the cost per measurement. As this ratio increases, 
the optimal design favors increasing the number of repeated 
measurements and decreasing the duration of follow-up. In 
order to calculate k and D from (6) and (7), respectively, values 
of X and <j\ must be assumed. Estimates may be obtained from 
the literature or preliminary studies. 

The above result is valid only when k is large enough so that 
(k — 1 )/(k + 1) = 1. When this assumption does not hold, closed 
form solutions are not available for calculating the optimal k 
and D, and iterative methods must be utilized. Investigators 
who are unfamiliar with iterative numerical techniques may 
need to consult a statistician. 

Study Design for Estimating and Comparing 
Population Half-Lives 

In the above discussion, it was assumed that the primary focus 
was on estimating the subject-specific half-lives. Thus, the size 
of the study population was not relevant. However, when the 
goal is to estimate the average half-life in a particular popula- 
tion, or to compare the half-lives in two different populations, 
then one needs to consider the number of subjects to include 
in the study, in addition to the frequency and duration of mea- 
surements. 

Assume that the sample population is comprised of N sub- 
jects, and that each subject has a "true" rate parameter, X„ which 

.     is distributed with mean \P and variance, aj. Thus, \F can be 
interpreted as the underlying population rate parameter, and 
o? is the variance in X, between individuals. Furthermore, as- 

;   sume that the frequency of measurement, study duration, and 
^ J o< are the same for all subjects. 
|i»    Given     the     estimated     subject-specific     half-lives: 

I'm,■■.,f!n.}, the population half-life, fM, may be estimated 
: by; Ki = {t\n + • • • + ftnVN. Using result (4) and the assump- 
tions above, it can be shown that the variance of tfc is equal to 

VtfO = ln(2): 

$ 
o? + 

g,2{12(fc-l)} 
D2k(k + 1) (8) 

Equation (8) can be used to determine the k, £>, and N that will 
result in a certain level of precision in the population half-life 
estimate. One can see from the form of the equation that the 
precision of ffß improves as k, D, and N increase, and that 
increases in TV will diminish both the contributions of orj and 
ul to the variance. Note that the variance is no longer directly 
proportional to a factor which is a function only of k, D and 
N. Thus, tables similar to Table 1 cannot be generated unless 
values for 07 and a] are assumed. The use of (8) will be 
illustrated in the example. 

Design issues for studies comparing the half-lives between 
two populations will now be considered. Let t\n and t\n. denote 
the half-lives in the two populations. The null hypothesis is 
H<;.t\a — t\a- We assume that the sample sizes in both groups 
are equal to N, that all subjects have the same number of 
repeated measurements obtained at the same time intervals, and 
that the between-subject variance of the true rate parameter is 
equal to o\ for both populations. It is shown in Appendix I that 
for fixed values of k and D, the required number of subjects 
per group for attaining a (1 — ß) level of power to detect the 
alternative hypothesis, HA:t\n ¥= t\a at an a significance level is 

N = ln(2)2 

(  ,__   July 
(9) 

<t + 
oil2(fc - 1) 
D2jfc(fc + 1) 

where Za/2 and Zp denote the standard normal deviates corres- 
ponding to a/2 and ß significance levels, respectively, and 
A = (X, + X2)/2. 

Note that since the required sample size depends on Xt and 
X2, the actual values of t\a and t\n need to be specified, and 
not just the magnitude of their difference. Equation (9) can also 
be easily re-expressed to determine the k or D to attain a 
specified level of power, for fixed values of the other pa- 
rameters. 
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The formula for determining the sample size was derived 
assuming that the duration of the study and the number of 
repeats are fixed. However, the most common situation when 
designing a study is that k and D, in addition to N, need to be 
determined. Methods similar to the above may be utilized to 
calculate the optimal values for the number of subjects, number 
of repeats, and duration of study which will minimize the overall 
study cost, while attaining a specified level of power. The total 
cost of the study can be denoted as C = c0 + (c,k + c7D + 
c,)2N, where c0 denotes overhead and other fixed costs which 
are independent ofk, D, and N; c, and c2 are the costs associated 
with each measurement and each interval of follow-up, respec- 
tively; and c3 denotes the cost of enrolling each additional 
subject. 

The optimal parameter values for k, D, and N can be deter- 
mined by minimizing C, subject to the constraint in (9). Unlike 
the previous problem, however, this has no closed form solution 
and must be solved iteratively. A Newton-Raphson algorithm, 
written in SAS PROCIML, was utilized to estimate the optimal 
parameters (Press et al. 1986). This algorithm requires calcula- 
tion of the first and second order derivatives, with respect to the 
parameters of interest, of the function that is to be minimized. In 
this case, the function is C = c0 + (c,it + c2D + c3)2N, with 
N substituted by the expression in (9). Expressions for the first- 
and second-order derivatives of C with respect to k and D, and 
details of the algorithm, are given in Appendix II. 

Specific values of z«, zß, oi, oi, t \n, and t\n, as well as the 
costs, c, c2, and c3, must be assumed. Note that because the 
first- and second-order derivatives of C with respect to k and 
D are independent of c0, the overhead cost will not affect the 
outcome of the minimization process, and hence, need not be 
specified. Given initial starting values for k and D, the algorithm 
iteratively finds the values that minimize C. The optimal number 
of subjects, N, is then calculated from (9). An example illustrat- 
ing the methods is presented in the next section. 

Example 

In this section, utilization of the methods to design a study to 
compare the differences in the half-life of PCBs between sub- 
jects with and without breast cancer will be illustrated. First, 
values of the variance components, oi, the between-subject 
variance in the true rate parameter, and oi, the variance of the 
deviations of the observed measurements (log transformed) 
from the values predicted from equation (2), must be assumed. 
Variance estimates were obtained using pilot data from the 
NYU Women's Health Study (NYUWHS), a prospective cohort 
of 14,291 women who have been donating multiple blood sam- 
ples over time (Toniolo et al. 1991). A breast cancer case- 
control study nested in this cohort found elevated, but non- 
significant, levels of PCBs measured at enrollment among cases 
relative to controls (Wolff et al. 1993). No half-lives were 
measured at that time because only one blood donation per 
subject was analyzed. Subsequently, pilot data became available 
on subjects in the NYUWHS who had at least 3 blood donations. 
Concentrations of PCBs were measured in serum specimens 
that have been collected and stored since enrollment; the assays 
were performed under the direction of Dr. Mary Wolff at Mt. 
Sinai Medical Center. Details of the experimental protocol are 
provided in Wolff et al. (1991). 

In calculating the half-lives for this cohort, the concentrations 

of PCBs within subjects are assumed to be decreasing over 
time. In principle, however, the body burden of PCBs may 
actually increase in individuals who are chronically exposed 
to low levels of the toxin and whose initial concentrations were 
in the range of normal background levels, resulting in negative 
half-life estimates. For our example, the analysis was restricted 
to include only the 15 subjects with at least 3 measurements 
of PCBs available who had a positive estimate of half-life. The 
mean half-life of PCBs among these subjects was estimated to 
be 10 years. 

An estimate of a, was obtained by fitting the following linear 
mixed ANOVA model: 

Yy = u- + a, + \jtij + eg, (10) 

where Y0 is defined as the logarithm of the/' measurement of 
PCB from subject i, |x denotes the overall mean, a, denotes a 
random subject effect, X, is the rate parameter for subject i, % 
is the time since enrollment for subject i and donation j, and 
e,j, is the residual error, which is assumed to be distributed with 
mean 0, and common variance, oi. The mean squared error 
resulting from model (10) estimates oi Fitting (10) to the 
NYUWHS data yielded a) = .046. 

Obtaining an estimate of the between-subject variance of the 
true rate parameters, oi was more problematic. If the measure- 
ments from all subjects were made at the same set of time 
points, t = {?,, ..., tt}, then one could estimate oi by first 

*■> 

estimating \, for all subjects and subtracting; 

the observed variance of X„ since the unconditional variance 

of X; is equal to of + : —. However, in the NYUWHS 

and in most other studies, subjects have different numbers of 
repeated measurements obtained at varying time intervals. In 
this case, a conservative estimate of oi would be to use the 
observed variance of X,. Although this leads to an overestimate 
of the required sample size, the approximation improves as the 
number of repeated measurements and the duration between 
measurements become large. The observed variance of the rate 
parameters of PCBs from our pilot data was estimated to be 
.0028. 

Before determining the optimal design for comparing the 
half-lives between two populations, we illustrate how one can 
generate tables using (8) and the estimates of a2, and oi to 
evaluate the effect of increasing k, D, and N on the precision 
of the estimate of a single population half-life. Suppose one 
assumes that the true underlying half-life of PCB for the breast 
cancer cases is 11 years. This corresponds to a population1 jate' 
parameter of X„ = ln(2)/ll = .063. Using (8), we generated 
Table 2, which shows the variance of ip

m for selected values 
of k, D, and N. For example, with a sample size of 75 subjects 
measured four times over a period of 8 years, the variance of 
the estimated half-life will be 1.66, corresponding to a 95% 
confidence interval width of: 2 X 1.96 X Vl.66 = 5.05 years 
for the true population half-life. In this particular example, 
increasing the duration of study by a given number of years, 
say x, results in greater gains in precision compared with in- 
creasing by x the number of repeats or number of subjects. 
This result, however, may not apply for different values 
oi and oi. 

The optimal design for comparing the population half-lives 
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Table 2. Values of VCt^) for N = 25, 50, 75, 100; a\ = .0028; 
a\ — .046; Xp = .063, as a function of the number of repeats, k, and 
duration of study, D 

N = 25 

D 

k   2 4 6 8 10 15 20 

2 31.48 10.43 6.53 5.17 4.54 3.91 3.70 
4 28.67 9.73 6.22 4.99 4.43 3.86 3.67 
6 23.46 8.43 5.64 4.67 4.22 3.77 3.62 
8 19.78 7.51 5.23 4.44 4.07 3.71 3.58 

10 17.19 6.86 4.95 4.28 3.97 3.66 3.55 
15 13.24 5.87 4.51 4.03 3.81 3.59 3.51 
20 11.03 5.32 4.26 3.89 3.72 3.55 3.49 

N = 50 

D 

k   2 4 6 8 10 15 20 

2 15.74 5.22 3.27 2.58 2.27 1.96 1.85 
4 14.33 4.86 3.11 2.50 2.21 1.93 1.83 
6 11.73 4.21 2.82 2.33 2.11 1.89 1.81 
8 9.89 3.75 2.62 2.22 2.04 1.85 1.79 
10 8.60 3.43 2.47 2.14 1.98 1.83 1.78 
15 6.62 2.94 2.25 2.01 1.90 1.80 1.76 
20 5.52 2.66 2.13 1.95 1.86 1.78 1.75 

N = 75 

D 

k   2 4 6 8 10 15 20 

2 10.49 3.48 2.18 1.72 1.51 1.30 1.23 
4 9.56 3.24 2.07 1.66 1.48 1.29 1.22 
6 7.82 2.81 1.88 1.56 1.41 1.26 1.21 
8 6.59 2.50 1.74 1.48 1.36 1.24 1.19 
10 5.73 2.29 1.65 1.43 1.32 1.22 1.18 
15 4.41 1.96 1.50 1.34 1.27 1.20 1.17 
20 3.68 1.77 1.42 1.30 1.24 1.18 1.16 

N= 100 

D 

k   2 4 6 8 10 15 20 

2 
4 
6 
8 

10 
15 
20 

7.87 
7.17 
5.86 
4.95 
4.30 
3.31 
2.76 

2.61 
2.43 
2.11 
1.88 
1.71 
1.47 
1.33 

1.63 
1.56 
1.41 
1.31 
1.24 
1.13 
1.07 

1.29 
1.25 
1.17 
1.11 
1.07 
1.01 
0.97 

1.13 
1.11 
1.05 
1.02 
0.99 
0.95 
0.93 

0.98 
0.97 
0.94 
0.93 
0.92 
0.90 
0.89 

0.92 
0.92 
0.90 
0.89 
0.89 
0.88 
0.87 

of PCB between breast cancer cases and controls will now be 
determined. The following values for the costs of the study 
were assumed: $200 for each PCB assay (c,), $25 for each year 
of follow-up (c2), and $75 to enroll each subject (c3). Assuming 
that the half-life of PCB among control subjects is 8 years and 
that the study should have 80% power to detect an increase in 
the half-life to 11 years among breast cancer cases at an a = .05 
significance level, we found, using the iterative algorithm de- 
scribed in Appendix n, that the optimal design is to enroll 100 
subjects per group, and to obtain 2 measurements per subject 
over 12 years. 

Even though this design is the one that will minimize the 
overall cost of the study, in practice, it may not be feasible to 
conduct the study over a time period as long as 12 years. 
Suppose that 5 years is the maximum feasible duration of study. 
Then, one can minimize C with respect to k and N, while 
keeping D fixed at 5 years, to obtain the optimal design for a 
5 year study. Iterative methods similar to the above were used 
to determine that the optimal design for a 5 year study is to 
obtain 2 measurements per subject on 186''subjects per group. 
Although this design will yield the same level of power over 
a shorter duration as the first design, it will cost an addi- 
tional $6275. 

Figure 1 shows how the optimal k, D, and N change as a 
function of the cost of the assay, assuming the values of the 
other parameters have not changed. For example, if the cost of 
the PCB assay were only $2 rather than $200, then the optimal 
design is to obtain 26 measurements per subject over 5 years 
and enroll 103 subjects per group. The greatest changes in the 
optimal values for k, D, and N occur when c\ ranges from 
$l-$9. For assay costs greater than $9, the optimal value for 
k remains stable at 2 measurements. Corresponding changes in 
the optimal D and N in this region of cl are minimal. Similar 
graphs can be generated to evaluate the impact of varying the 
values of the other parameters on the optimal values. 

It is straightforward to show that specification of the level 
of power, type I error rate, and population half-lives only influ- 
ence the determination of the optimal N, and not k and D (see 
Appendix II). Thus, in order to evaluate how the optimal design 
changes as a function of a, 1 - ß, t\n, and t]a, one need only 
to re-calculate N using (9), since the required k and D will 
remain unchanged. For instance, continuing the initial example 
from above, in order for the study to attain 70%, as opposed 
to 80% power, the required number of subjects is reduced to 
77 per group, while the optimal k and D remain as above (k = 2; 
D = 12). The values for k and D are affected only by the costs, 
c,, c2 and c3, and the values of the variance components, a] 
and CT^. 

Discussion 

Understanding the pharmacokinetics, and in particular, the rate 
of excretion from the body of environmental contaminants is 
crucial for ascertaining the etiologic role of these risk factors in 
the development of disease. In this paper, methods for designing 
studies on estimating and comparing the half-lives of environ- 
mental toxins have been described. The ability to utilize these 
methods, however, may be limited by the availability of prelimi- 
nary estimates for the variance components. Although most 
studies on population half-lives provide estimates of the vari- 
ance of the population rate parameters, which may be used as 
an upper bound estimate of o^, estimates of oi are rarely pub- 
lished. The availability of pilot data becomes especially im- 
portant in this case. Also, because iterative methods are required 
to determine the optimal design for comparing two population 
half-lives, the techniques may not be easily implemented in 
practice for some investigators and a statisician may need to 
be consulted. Finally, the techniques in this paper are based on 
the assumptions of a one-compartment exponential decay model 
and a linear least-squares regression estimate of the rate parame- 
ter, X. Thus, they cannot be applied to the multi-compartment 
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o k = Number of Measurements     A D.= Duration of Study 
n N = Number of Subjects 
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80 100 Fig. 1. Optimal changes of k, D, and N as a 
function of assay cost. 

case. Extension of this work to accommodate the multi-com- 
partment assumption will be the subject of future research. 

Most published reports on the half-lives of environmental 
contaminants have been based on small numbers of subjects 
and small numbers of repeated measurements. The large vari- 
ability in the published estimates of the half-lives of toxins 
such as PCB may reflect the lack of precision that results from 
inadequate study designs. This paper demonstrates the gains in 
precision and statistical power that may be achieved by increas- 
ing the sample size, number of repeats, and time interval be- 
tween repeats, and underscores the importance of study design 
when planning studies on half-life. 
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Appendix I. Determination of the Sample Size for 
Comparing Two Population Half-Lives 

We assume that the sample sizes from the two populations are 
the same and are equal to N. Let i\a and i\a denote the observed 
half-lives in the two populations, and \\ and X2 denote the 
estimates of the corresponding rate parameters. Then the test 
statistic for evaluating H0:i\a = t2

m is of the form: 

Z = 
tin     ru2 

f. o7 + 
o?12(fc-l) 
&k(k+\) 

ln(2)2(2/^) 

where Z is distributed as AT(0,1), and X. = (X, + X2)/2. 

4 
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If the test statistic is to have power (1 — ß) to detect the 
alternative hypothesis, HA:t\n > t2

a at a 1-sided a — .05, then 
we have the following expression: 

Pr) ■>za 

07 
a)\2(k-\) 

D2k(k+\) 
ln(2)2(2/X4) 

H. 

= 1 - ß,     (1) 

where z„ denotes the critical value corresponding to the a 
proportion in the upper tail of the standard normal distribution. 

After some algebra, (1) can be re-expressed as: 

1 - ß = Pr ri« tin     (.ha     t\a) 

o? + 
o^!2(fc-l) 

D2k{k+\) 
ln(2) 

N 
> 

2j <r212(*-l) 
<rj + 

D2k(k+\) 
ln(2)2(2/X4; tin) 

1      D2k(k+l) 
ln(2): 

\x?   xy 

Under the alternative hypothesis, the expression on the left- 
hand side of the inequality has a N(0,\) distribution. Thus, 

1 - ß = Pr 

N 
Z> 

a + 
(X212(*-1) 

D2/t(fc+l) 
ln(2)2(2/X4) - (fjn - «?n) 

oi + 
cr212(fc-l) 

D^fc+l) 
ln(2): 

vxt   xy      J 

Note that the definition of X requires knowledge of X\ and 
X2, which are available^ only after completion of the study. 
However, for large n, X may_be well, approximated by A = 
(X| + X2)/2. After substituting A for X above, setting the expres- 
sion on the right-hand side equal to —zp and solving for N, 
we have 

N = ln(2)2 

_2 

(t\n ~ t\n) 

, ^ oJ12(A:_-1) oj + 
I?k(k + 1) 

This sample size was derived under the assumption of a one- 
sided alternative hypothesis. When HA is two-sided, the required 
sample size is obtained by simply substituting z^n for z« in (2). 

Appendix II. Details of the Newton-Raphson 
Algorithm 

The overall cost of the study is equal to: 

C = c0 + (c,fc + c2D + c3)2N 
= c0 + (c,* + c2D + c3)2 

ln(2)2 

_2 

Z*V2/A< + ZßVl + l 

(t'm - tin) 
0"2 + 

g212(fc - 1) 
&k(k + 1) 

with N substituted by the expression in (10). The optimal k and 
D which will minimize C are the values which will solve the 
following first derivative equations: 

dT-T'ff* + _DH(F7 I)2 
+ c3o* 12     CjO-212 

D2 D 

1  (*2 + *)2  Jj     ° 
3C_.f     ,     12a2(fe - 1) /2c,fc .  c2     2c3\| . 

where A = 21n(2)2 zaV2/X4 + ZgVl/X4 + 1/Xj 
(fl/2 - tin) 

2 

. Note that 

since A is not a function of fc and D, the constant can be omitted 
without affecting the final solution. 

The Newton-Raphson method for solving the above equations 
requires calculation of the corresponding second-order deriv- 
atives: 

d2C = 12g2     -4c,       (c3 + c2P)2(ie - 3fc2 - 3k - 1) 
dk2       &  \(k+ l)3 (tf + k)3 

32C = 24(k - l)o-; llcyl 
9D2       (k + l)k   \ D4 

ci  , 3c3 

dkdD 
-12a2 

3cJ\ 

(fc+l)2£>3 '    (B + kf   \ö3   2   /• 
4c, 1 + 2k - , 

Given the preliminary values, (fco, D0)> the algorithm calcu- 
lates updated values for Jfc and D according to: 

^C   &c~ 
-1 

~dc 
die dkdo 
d2C    PC 

dk 
dc 

dDdk ao2 
dD 

The algorithm repeatedly updates (k, D) and calculates the 
above until convergence is obtained. 


